Generating Images with Recurrent Adversarial Networks

Related tags

Deep Learning GRAN
Overview

Generating Images with Recurrent Adversarial Networks

Python (Theano) implementation of Generating Images with Recurrent Adversarial Networks code provided by Daniel Jiwoong Im, Chris Dongjoo Kim, Hui Jiang, and Roland, Memisevic

Generative Recurrent Adversarial Network (GRAN) is a recurrent generative model inspired by the view that unrolling the gradient-based optimization yields a recurrent computation that creates images by incrementally adding onto a visual “canvas”. GRAN is trained using adversarial training to generate very good image samples.

Generative Adversarial Metric (GAM) quantitatively compare adversarial networks by having the generators and discriminators of these networks compete against each other.

For more information, see

@article{Im2015,
    title={Generating Images with Recurrent Adversarial Networks },
    author={Im, Daniel Jiwoong and Kim, Chris Dongjoo and Jiang, Hui and Memisevic, Roland},
    journal={http://arxiv.org/abs/1602.05110},
    year={2016}
}

If you use this in your research, we kindly ask that you cite the above arxiv paper.

Dependencies

Packages

How to set-up LSUN dataset

  1. Obtain the LSUN dataset from fyu's repository
  2. Resize the image to 64x64 or 128x128.
  3. Split the dataset to train/val/test set.
  4. Update the paths in provided paths.yaml, and run the script
python to_hkl.py 
   

   

Link it to the inquire/main file, e.g.

lsun_datapath='/local/scratch/chris/church/preprocessed_toy_10/'

How to run

Entry code for CIFAR10 and LSUN Church are

    - ./main_granI_cifar10.py

How to obtain samples with pretrained models

First download the pretrained model from this Dropbox Link, save it to a local folder, and supply the path when prompted.

    python inquire_samples.py # to attain Nearest Neighbour and Sequential Samples

    python main_granI_lsun.py # to attain 100 samples from the pretrained model.

Here are some CIFAR10 samples generated from GRAN:

Image of cifar10

Image of cifar10

Here are some LSUN Church samples generated from GRAN:

Image of lsun

Image of lsun

Here are some Mix of LSUN Living Room and Kitchen dataset generated from GRAN:

Image of lsun

You might also like...
Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search

CLIP-GLaSS Repository for the paper Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search An in-browser demo is

Code for the paper: Adversarial Training Against Location-Optimized Adversarial Patches. ECCV-W 2020.

Adversarial Training Against Location-Optimized Adversarial Patches arXiv | Paper | Code | Video | Slides Code for the paper: Sukrut Rao, David Stutz,

transfer attack; adversarial examples; black-box attack; unrestricted Adversarial Attacks on ImageNet; CVPR2021 天池黑盒竞赛
transfer attack; adversarial examples; black-box attack; unrestricted Adversarial Attacks on ImageNet; CVPR2021 天池黑盒竞赛

transfer_adv CVPR-2021 AIC-VI: unrestricted Adversarial Attacks on ImageNet CVPR2021 安全AI挑战者计划第六期赛道2:ImageNet无限制对抗攻击 介绍 : 深度神经网络已经在各种视觉识别问题上取得了最先进的性能。

Adversarial-Information-Bottleneck - Distilling Robust and Non-Robust Features in Adversarial Examples by Information Bottleneck (NeurIPS21)
Super-Fast-Adversarial-Training - A PyTorch Implementation code for developing super fast adversarial training

Super-Fast-Adversarial-Training This is a PyTorch Implementation code for develo

Official Pytorch Implementation of Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images.
Official Pytorch Implementation of Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images.

IAug_CDNet Official Implementation of Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images. Overview We propose a

Code for the ECCV2020 paper "A Differentiable Recurrent Surface for Asynchronous Event-Based Data"

A Differentiable Recurrent Surface for Asynchronous Event-Based Data Code for the ECCV2020 paper "A Differentiable Recurrent Surface for Asynchronous

Implementation of our paper 'RESA: Recurrent Feature-Shift Aggregator for Lane Detection' in AAAI2021.
Implementation of our paper 'RESA: Recurrent Feature-Shift Aggregator for Lane Detection' in AAAI2021.

RESA PyTorch implementation of the paper "RESA: Recurrent Feature-Shift Aggregator for Lane Detection". Our paper has been accepted by AAAI2021. Intro

Comments
  • How to compare GANs without a test set?

    How to compare GANs without a test set?

    I have a question about your paper, about the test set x_{test}: suppose I have an unlabeled training set with only one class (only pictures of tables, say). I use 2 GANs to generate more pictures of tables. How can I use your metric to compare them?

    opened by benstaf 0
  • MNIST

    MNIST

    I found when I train in the MNIST dataset, in epoch 83, it begin output meaningful image. before it , the output is all noise ,can you tell me the learing rate and other hyper-parameters when you train in the mnist dataset?

    opened by kikyou123 0
Owner
Daniel Jiwoong Im
Daniel Jiwoong Im
Generating Anime Images by Implementing Deep Convolutional Generative Adversarial Networks paper

AnimeGAN - Deep Convolutional Generative Adverserial Network PyTorch implementation of DCGAN introduced in the paper: Unsupervised Representation Lear

Rohit Kukreja 23 Jul 21, 2022
An image base contains 490 images for learning (400 cars and 90 boats), and another 21 images for testingAn image base contains 490 images for learning (400 cars and 90 boats), and another 21 images for testing

SVM Données Une base d’images contient 490 images pour l’apprentissage (400 voitures et 90 bateaux), et encore 21 images pour fait des tests. Prétrait

Achraf Rahouti 3 Nov 30, 2021
Digan - Official PyTorch implementation of Generating Videos with Dynamics-aware Implicit Generative Adversarial Networks

DIGAN (ICLR 2022) Official PyTorch implementation of "Generating Videos with Dyn

Sihyun Yu 147 Dec 31, 2022
Official implementation for NIPS'17 paper: PredRNN: Recurrent Neural Networks for Predictive Learning Using Spatiotemporal LSTMs.

PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive Learning The predictive learning of spatiotemporal sequences aims to generate future

THUML: Machine Learning Group @ THSS 243 Dec 26, 2022
Code and datasets for the paper "Combining Events and Frames using Recurrent Asynchronous Multimodal Networks for Monocular Depth Prediction" (RA-L, 2021)

Combining Events and Frames using Recurrent Asynchronous Multimodal Networks for Monocular Depth Prediction This is the code for the paper Combining E

Robotics and Perception Group 69 Dec 26, 2022
Official repository for the paper "Can You Learn an Algorithm? Generalizing from Easy to Hard Problems with Recurrent Networks"

Easy-To-Hard The official repository for the paper "Can You Learn an Algorithm? Generalizing from Easy to Hard Problems with Recurrent Networks". Gett

Avi Schwarzschild 52 Sep 8, 2022
An implementation of DeepMind's Relational Recurrent Neural Networks in PyTorch.

relational-rnn-pytorch An implementation of DeepMind's Relational Recurrent Neural Networks (Santoro et al. 2018) in PyTorch. Relational Memory Core (

Sang-gil Lee 241 Nov 18, 2022
Differentiable architecture search for convolutional and recurrent networks

Differentiable Architecture Search Code accompanying the paper DARTS: Differentiable Architecture Search Hanxiao Liu, Karen Simonyan, Yiming Yang. arX

Hanxiao Liu 3.7k Jan 9, 2023
Code for the paper "Ordered Neurons: Integrating Tree Structures into Recurrent Neural Networks"

ON-LSTM This repository contains the code used for word-level language model and unsupervised parsing experiments in Ordered Neurons: Integrating Tree

Yikang Shen 572 Nov 21, 2022
Physics-informed convolutional-recurrent neural networks for solving spatiotemporal PDEs

PhyCRNet Physics-informed convolutional-recurrent neural networks for solving spatiotemporal PDEs Paper link: [ArXiv] By: Pu Ren, Chengping Rao, Yang

Pu Ren 11 Aug 23, 2022