Optimal skincare partition finder using graph theory

Related tags

Algorithms pigment
Overview

Pigment

License: ISC CC BY-SA 4.0

The problem of partitioning up a skincare regime into parts such that each part does not interfere with itself is equivalent to the minimal clique cover problem, which can be transformed into the vertex colouring of a graph, both of which are NP-hard and thus computationally infeasible to find optimal solutions for. This project is a brute-force proof-of-concept that exhaustively solves the problem of good skincare product grouping!

Usage

  1. Modify the ingredient conflict dictionary (named conflicts in the pigment.py mainline) to reflect your skincare products. If you say A conflicts with B, you don't have to also write the rule that B conflicts with A. The script handles the reflexivity.

  2. Run the program (you need Python 3):

    python3 pigment.py

Algorithm

This algorithm takes in an adjacency list for a conflict graph where each edge between two nodes represents an instance of two ingredients conflicting.

It then exhaustively generates every possible partition using a recursive backtracking depth-first-search algorithm where for each ingredient, it explores every sub-tree consisting of adding the ingredient to every existing part before finally creating a new part. Each terminal/leaf node represents a generated partition, which we exhaustively check: for each part in the partition, we check to see if any pair exists as an edge in the conflict dictionary. If no such pairs exist among any part, the partition is valid.

partition tree

The algorithm looks for the valid partition with the least amount of parts.

The number of partitions that are brute-force generated is equivalent to the nth Bell number and it is sequence A000110 in the OEIS.

It runs in O(a fuckton of time). If you have a lot of stuff in your skincare routine, this algorithm may take forever to run. It is recommended that you do not add vanity elements (aka adding an element just for it to show up in the final result) such as:

CONFLICTS = OrderedDict((
    ("A", ["B", "C"])
    ("D", [])
))

In this case, "D" is a vanity element; it contributes nothing to conflict data but bloats the state space (which, in a brute-force algorithm like this, is not good). If an element doesn't conflict with anything, then use it as liberally as you like without restriction.

You have been warned.

Modelling

Say, for the purposes of illustration (as these opinions are still hotly debated in the skincare community today), we have the following ingredients:

  • Retinol
  • AHAs/BHAs
  • Copper peptides
  • Ferrulic acid

and the following interactions:

  • Retinol and AHAs/BHAs conflict with each other
  • Copper peptides interfere with AHAs/BHAs
  • Ferrulic acid interferes with copper peptides

We can therefore model compatible products as an undirected graph where each node represents a skincare ingredient and each edge between node a and node b represents the sentence "ingredient a is compatible with ingredient b". We can represent the relation above as such:

compatibility graph

The ideal here is that we want to take all four of these ingredients at once, however as noted by the conflicts above, that isn't possible. The next best solution, if we can't create 1 part, is to try to create 2 part. We know that in our model, retinol is compatible with copper peptides, and ferrulic acid is compatible with AHAs/BHAs, but we discard the possibility of using retinol with ferrulic acid though, as its part contains AHAs/BHAs, which are not compatible with retinol (as shown by the lack of edge).

minimum clique

This is the optimal solution. In one skincare session, we take retinol with the copper peptides, and another session we take AHAs/BHAs and ferrulic acid.

Our major goal, therefore, is to partition the ingredients list into as few parts as possible such that each parts's ingredients represents a clique, where a clique is an induced subgraph that is complete. In layperson's terms, we are looking to create subgraphs of ingredients such that each ingredient has an edge connected to every other ingredient node in the subgraph. Such complete subgraphs are known as cliques. As shown below, when two ingredients are compatible with each other, the resultant clique has a single edge between two nodes (as shown by K2: 1). For four ingredients, the resultant clique has six edges between the four nodes (as shown by K2:6). To see ten ingredients compatible with each other is somewhat uncommon.

complete graphs These images are taken from Wikipedia.org and are by koko90. See attribution for details

Minimal Clique Cover

In formal terms, a "clique cover" or "partition into cliques" of an undirected graph is a partition (or splitting of the graph into groups) into constituent cliques. Our problem is to find the "minimal" clique cover—aka—doing it in the least number of cliques—or splits—possible. As shown in the figure above, the trivial case is K1: 0 as each individual ingredient is its own clique, but that's the worst-case scenario we are trying to avoid. It would mean that no skincare ingredient is compatible with anything else e.g. you may have to take each 10 skincare ingredient on separate days, which would be a scheduling nightmare.

Graph Colouring

We can make things more readable by looking at an equivalent problem.

Given a graph G, the complement of the graph, let's call it G2, is a graph with the same nodes as G, but every edge in the original graph is missing, and every midding edge in the original graph is now an edge. In layperson's terms, a complement graph G2 for graph G contains only the edges necessary to turn G into a complete graph, as shown by this diagram:

complement of the Petersen graph Image edited by Claudio Rocchini; derived from David Eppstein. See attribution for details

We can invert the "maximal clique" problem by not mapping whether two skincare products are compatible with each other, but rather if they conflict. This makes specifications a whole lot easier to make, as now we can assume anything that isn't connected by an edge is compatible. If we change our first graph to model conflicts instead of synergies, we get the following:

conflict graph

Our problem is now to induce subgraphs such that none of the nodes have any edges between them. Each subgraph is its own group. In this example, we induce the subgraphs for the nodes {Retinol, Copper peptides} as well as for {Ferrulic acid, AHAs/BHAs}, as each graph has no nodes:

coloured conflict graph

Those with a background in CS will immediately notice that this is actually the well-studied graph colouring sub-problem known as "vertex colouring": colouring a graph such that no two colours are adjacent to each other. In this case, each colour group represents a partition, like from earlier. Again, the optimization problem is NP-hard and is intractable. Which is why the algorithm solves the colouring problem in the ugliest, most brute force way possible.

Bibliography

Attribution

  • Graphs made by me using Dreampuf's Dot Grapher and they are licensed as CC BY-SA 4.0 as the project is
  • Complete graphs K1, K2, and K3 are simple geometry and thus are in the public domain (author is David Benbennick).
  • Simplex graphs 4, 5, 6, 7, 8, 9, 10, 11, were released by Koko90 under GFDL and CC BY-SA 3.0 and will be coalesced into the license of this project, thus making them CC BY-SA 4.0
  • The Petersen graph complement image was edited by Claudio Rocchini whose original author was David Eppstein, also released under GFDL and CC BY-SA 3.0. CC BY-SA 4.0 as per the project.
You might also like...
Algorithmic trading backtest and optimization examples using order book imbalances. (bitcoin, cryptocurrency, bitmex)
Algorithmic trading backtest and optimization examples using order book imbalances. (bitcoin, cryptocurrency, bitmex)

Algorithmic trading backtest and optimization examples using order book imbalances. (bitcoin, cryptocurrency, bitmex)

sudoku solver using CSP forward-tracking algorithms.

Sudoku sudoku solver using CSP forward-tracking algorithms. Description Sudoku is a logic-based game that consists of 9 3x3 grids that create one larg

A Python program to easily solve the n-queens problem using min-conflicts algorithm

QueensProblem A program to easily solve the n-queens problem using min-conflicts algorithm Performances estimated with a sample of 1000 different rand

Data Model built using Logistic Regression Algorithm on Python.

Logistic-Regression Problem Statement: Your client is a retail banking institution. Term deposits are a major source of income for a bank. A term depo

FingerPy is a algorithm to measure, analyse and monitor heart-beat using only a video of the user's finger on a mobile cellphone camera.
FingerPy is a algorithm to measure, analyse and monitor heart-beat using only a video of the user's finger on a mobile cellphone camera.

FingerPy is a algorithm using python, scipy and fft to measure, analyse and monitor heart-beat using only a video of the user's finger on a m

Using Bayesian, KNN, Logistic Regression to classify spam and non-spam.

Make Sure the dataset file "spamData.mat" is in the folder spam\src Environment: Python --version = 3.7 Third Party: numpy, matplotlib, math, scipy

This is an Airport Scheduling Time table implemented using Genetic Algorithm

This is an Airport Scheduling Time table implemented using Genetic Algorithm In this The scheduling is performed on the basisi of that no two Air planes are arriving or departing at the same runway at the same time and day there are total of 4 Airplanes 3 and 3 Runways.

Policy Gradient Algorithms (One Step Actor Critic & PPO) from scratch using Numpy
Policy Gradient Algorithms (One Step Actor Critic & PPO) from scratch using Numpy

Policy Gradient Algorithms From Scratch (NumPy) This repository showcases two policy gradient algorithms (One Step Actor Critic and Proximal Policy Op

Wordle-solver - A program that solves a Wordle using a simple algorithm

Wordle Solver A program that solves a Wordle using a simple algorithm. To see it

Owner
Jason Nguyen
CS @ University of Guelph
Jason Nguyen
zoofs is a Python library for performing feature selection using an variety of nature inspired wrapper algorithms. The algorithms range from swarm-intelligence to physics based to Evolutionary. It's easy to use ,flexible and powerful tool to reduce your feature size.

zoofs is a Python library for performing feature selection using a variety of nature-inspired wrapper algorithms. The algorithms range from swarm-intelligence to physics-based to Evolutionary. It's easy to use , flexible and powerful tool to reduce your feature size.

Jaswinder Singh 168 Dec 30, 2022
Sorting Algorithm Visualiser using pygame

SortingVisualiser Sorting Algorithm Visualiser using pygame Features Visualisation of some traditional sorting algorithms like quicksort and bubblesor

null 4 Sep 5, 2021
A Python Package for Portfolio Optimization using the Critical Line Algorithm

A Python Package for Portfolio Optimization using the Critical Line Algorithm

null 19 Oct 11, 2022
🧬 Training the car to do self-parking using a genetic algorithm

?? Training the car to do self-parking using a genetic algorithm

Oleksii Trekhleb 652 Jan 3, 2023
A tictactoe where you never win, implemented using minimax algorithm

Unbeatable_TicTacToe A tictactoe where you never win, implemented using minimax algorithm Requirements Make sure you have the pygame module along with

Jessica Jolly 3 Jul 28, 2022
Exact algorithm for computing two-sided statistical tolerance intervals under a normal distribution assumption using Python.

norm-tol-int Exact algorithm for computing two-sided statistical tolerance intervals under a normal distribution assumption using Python. Methods The

Jed Ludlow 1 Jan 6, 2022
Algorithmic virtual trading using the neostox platform

Documentation Neostox doesnt have an API Support, so this is a little selenium code to automate strategies How to use Clone this repository and then m

Abhishek Mittal 3 Jul 20, 2022
Sign data using symmetric-key algorithm encryption.

Sign data using symmetric-key algorithm encryption. Validate signed data and identify possible validation errors. Uses sha-(1, 224, 256, 385 and 512)/hmac for signature encryption. Custom hash algorithms are allowed. Useful shortcut functions for signing (and validating) dictionaries and URLs.

Artur Barseghyan 39 Jun 10, 2022
Algorithm for Cutting Stock Problem using Google OR-Tools. Link to the tool:

Cutting Stock Problem Cutting Stock Problem (CSP) deals with planning the cutting of items (rods / sheets) from given stock items (which are usually o

Emad Ehsan 87 Dec 31, 2022
A Python project for optimizing the 8 Queens Puzzle using the Genetic Algorithm implemented in PyGAD.

8QueensGenetic A Python project for optimizing the 8 Queens Puzzle using the Genetic Algorithm implemented in PyGAD. The project uses the Kivy cross-p

Ahmed Gad 16 Nov 13, 2022