Dense Gaussian Processes for Few-Shot Segmentation

Related tags

Deep Learning DGPNet
Overview

DGPNet - Dense Gaussian Processes for Few-Shot Segmentation

Welcome to the public repository for DGPNet. The paper is available at arxiv: https://arxiv.org/abs/2110.03674 .

How to run

Download data

  1. Download and unzip PASCAL and COCO images
  2. Download and unzip PASCAL and COCO annotations (we provide link here)
  3. Change local_config.py to point out the images and annotations. Also change slurm_launch.sh if using slurm.
  4. Download and unzip PASCAL and COCO data splits (we provide link here)
  5. Make sure that the data splits are at DGPNet/data_splits

Install dependencies

The dependencies are listed in DGPNet/singularity/Dockerfile21.09

Train and test model

We typically run via slurm, using

sbatch singularity/slurm_launch.sh runfiles/dgp_5shot_pascal_resnet50.py --train --test --dataset pascal --fold 0 --add_packages_to_path

Code layout

  • checkpoints - Checkpoints will be stored here at the end of training.
  • data_splits - Defines the different folds.
  • fss - Code is here.
  • local_config.py - Used to set up paths
  • logs - Used to store slurm checkpoints
  • runfiles - Any experiment we run is defined in a runfile. The runfile is launched as main to start the experiment.
  • singularity - We use singularity/slurm and any files related to that are stored here.
  • visualization - During training and testing, our code stores some visualizations. They go here.
You might also like...
Code for 'Self-Guided and Cross-Guided Learning for Few-shot segmentation. (CVPR' 2021)'

SCL Introduction Code for 'Self-Guided and Cross-Guided Learning for Few-shot segmentation. (CVPR' 2021)' We evaluated our approach using two baseline

Official code for
Official code for "Simpler is Better: Few-shot Semantic Segmentation with Classifier Weight Transformer. ICCV2021".

Simpler is Better: Few-shot Semantic Segmentation with Classifier Weight Transformer. ICCV2021. Introduction We proposed a novel model training paradi

PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation (TPAMI).

PFENet This is the implementation of our paper PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation that has been accepted to IEE

The code is for the paper
The code is for the paper "A Self-Distillation Embedded Supervised Affinity Attention Model for Few-Shot Segmentation"

SD-AANet The code is for the paper "A Self-Distillation Embedded Supervised Affinity Attention Model for Few-Shot Segmentation" [arxiv] Overview confi

CharacterGAN: Few-Shot Keypoint Character Animation and Reposing
CharacterGAN: Few-Shot Keypoint Character Animation and Reposing

CharacterGAN Implementation of the paper "CharacterGAN: Few-Shot Keypoint Character Animation and Reposing" by Tobias Hinz, Matthew Fisher, Oliver Wan

Few-shot Learning of GPT-3

Few-shot Learning With Language Models This is a codebase to perform few-shot "in-context" learning using language models similar to the GPT-3 paper.

Ready-to-use code and tutorial notebooks to boost your way into few-shot image classification.

Easy Few-Shot Learning Ready-to-use code and tutorial notebooks to boost your way into few-shot image classification. This repository is made for you

git《FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding》(CVPR 2021) GitHub: [fig8]
git《FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding》(CVPR 2021) GitHub: [fig8]

FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding (CVPR 2021) This repo contains the implementation of our state-of-the-art fewshot ob

Library of various Few-Shot Learning frameworks for text classification

FewShotText This repository contains code for the paper A Neural Few-Shot Text Classification Reality Check Environment setup # Create environment pyt

Comments
  • how to visualise the Gaussian process?

    how to visualise the Gaussian process?

    Hi there, I think your idea of using GP is very interesting. May I know how you visualize the Gaussian mean and covariance in the overview figure (Figure2 in the latest Arvix version)? Thanks in advance.

    opened by ry-jojo 4
  • torch.linalg.cholesky warnings

    torch.linalg.cholesky warnings

    Hi Joakim, When training on 10shot, I am facing with warnings like the below:

    WARNING batched routines are designed for small sizes. It might be better to use the Native/Hybrid classical routines if you want good performance.

    I think this warning comes from the torch.linalg.cholesky(K_ss), when K_ss's largest size() > 2048.

    May I know how you deal with this warning during training? Thanks in advance!

    opened by ry-jojo 2
Owner
null
A Python implementation of global optimization with gaussian processes.

Bayesian Optimization Pure Python implementation of bayesian global optimization with gaussian processes. PyPI (pip): $ pip install bayesian-optimizat

fernando 6.5k Jan 2, 2023
Supplementary code for the AISTATS 2021 paper "Matern Gaussian Processes on Graphs".

Matern Gaussian Processes on Graphs This repo provides an extension for gpflow with Matérn kernels, inducing variables and trainable models implemente

null 41 Dec 17, 2022
A Tensorflow based library for Time Series Modelling with Gaussian Processes

Markovflow Documentation | Tutorials | API reference | Slack What does Markovflow do? Markovflow is a Python library for time-series analysis via prob

Secondmind Labs 24 Dec 12, 2022
Few-NERD: Not Only a Few-shot NER Dataset

Few-NERD: Not Only a Few-shot NER Dataset This is the source code of the ACL-IJCNLP 2021 paper: Few-NERD: A Few-shot Named Entity Recognition Dataset.

THUNLP 319 Dec 30, 2022
Code for T-Few from "Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning"

T-Few This repository contains the official code for the paper: "Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learni

null 220 Dec 31, 2022
Code for our method RePRI for Few-Shot Segmentation. Paper at http://arxiv.org/abs/2012.06166

Region Proportion Regularized Inference (RePRI) for Few-Shot Segmentation In this repo, we provide the code for our paper : "Few-Shot Segmentation Wit

Malik Boudiaf 138 Dec 12, 2022
Official PyTorch Implementation of Hypercorrelation Squeeze for Few-Shot Segmentation, arXiv 2021

Hypercorrelation Squeeze for Few-Shot Segmentation This is the implementation of the paper "Hypercorrelation Squeeze for Few-Shot Segmentation" by Juh

Juhong Min 165 Dec 28, 2022
[CVPR 2021] Few-shot 3D Point Cloud Semantic Segmentation

Few-shot 3D Point Cloud Semantic Segmentation Created by Na Zhao from National University of Singapore Introduction This repository contains the PyTor

null 117 Dec 27, 2022
The implementation of PEMP in paper "Prior-Enhanced Few-Shot Segmentation with Meta-Prototypes"

Prior-Enhanced network with Meta-Prototypes (PEMP) This is the PyTorch implementation of PEMP. Overview of PEMP Meta-Prototypes & Adaptive Prototypes

Jianwei ZHANG 8 Oct 14, 2021
Adaptive Prototype Learning and Allocation for Few-Shot Segmentation (CVPR 2021)

ASGNet The code is for the paper "Adaptive Prototype Learning and Allocation for Few-Shot Segmentation" (accepted to CVPR 2021) [arxiv] Overview data/

Gen Li 91 Dec 23, 2022