GNEE - GAT Neural Event Embeddings

Related tags

Deep Learning GNEE
Overview

GNEE - GAT Neural Event Embeddings

This repository contains source code for the GNEE (GAT Neural Event Embeddings) method introduced in the paper: "Semi-Supervised Graph Attention Networks for Event Representation Learning".

Abstract: Event analysis from news and social networks is very useful for a wide range of social studies and real-world applications. Recently, event graphs have been explored to represent event datasets and their complex relationships, where events are vertices connected to other vertices that represent locations, people's names, dates, and various other event metadata. Graph representation learning methods are promising for extracting latent features from event graphs to enable the use of different classification algorithms. However, existing methods fail to meet important requirements for event graphs, such as (i) dealing with semi-supervised graph embedding to take advantage of some labeled events, (ii) automatically determining the importance of the relationships between event vertices and their metadata vertices, as well as (iii) dealing with the graph heterogeneity. In this paper, we present GNEE (GAT Neural Event Embeddings), a method that combines Graph Attention Networks and Graph Regularization. First, an event graph regularization is proposed to ensure that all graph vertices receive event features, thereby mitigating the graph heterogeneity drawback. Second, semi-supervised graph embedding with self-attention mechanism considers existing labeled events, as well as learns the importance of relationships in the event graph during the representation learning process. A statistical analysis of experimental results with five real-world event graphs and six graph embedding methods shows that GNEE obtains state-of-the-art results.

File Structure

Our method consists of a BERT text encoding and a pre-processment procedure followed by modified version of GAT (Veličković et. al - 2017, https://arxiv.org/abs/1710.10903) to the event embedding task.

In our work, we adopt and modify the PyTorch implementation of GAT, pyGAT, developed by Diego999.

.
├── datasets_runs/ -> Datasets used
├── event_graph_utils.py -> Useful functions when working with event datasets
├── layers.py -> Implementation of Graph Attention layers
├── LICENSE
├── main.py -> Execute this script to reproduce our experiments (refer to our paper for more details)
├── models.py -> Implementation of the original GAT model
├── notebooks -> Run these notebooks to reproduce all our experiments.
├── README.md
├── requirements.txt
├── train.py -> Implementation of our preprocessing, traning and testing pipelines
└── utils.py -> Useful functions used in GAT original implementation.

Reproducibility Notebooks

./notebooks
├── DeepWalk_Event_Embeddings.ipynb -> DeepWalk Benchmark
├── GAT_Event_Embeddings_+_Without_Regularization.ipynb -> GAT w/o embeddings benchmark
├── GCN_Event_Embeddings_.ipynb -> GCN Benchmark
├── GNEE_Attention_Matrices_Example.ipynb -> GNEE Attention matrices visualization
├── GNEE_Embedding_Visualization_t_SNE.ipynb -> GNEE Embeddings visualization using t-SNE
├── GNEE.ipynb -> GNEE Benchmark
├── Label_Propagation_Event_Classification.ipynb -> LP Benchmark
├── LINE_Event_Embeddings.ipynb -> LINE Benchmark
├── Node2Vec_Event_Embeddings.ipynb -> Node2Vec Benchmark
├── SDNE_Event_Embeddings.ipynb -> SDNE Benchmark
└── Struct2Vec_Event_Embeddings.ipynb -> Struct2Vec Benchmark

Hardware requirements

When running on "dense" mode (no --sparse flag), our model uses about 18 GB on GRAM. On the other hand, the sparse mode (using --sparse) uses less than 1.5 GB on GRAM, which is an ideal setup to environments such as Google Colab.

Issues/Pull Requests/Feedbacks

Please, contact the authors in case of issues / pull requests / feedbacks :)

You might also like...
Improving XGBoost survival analysis with embeddings and debiased estimators
Improving XGBoost survival analysis with embeddings and debiased estimators

xgbse: XGBoost Survival Embeddings "There are two cultures in the use of statistical modeling to reach conclusions from data

State of the art Semantic Sentence Embeddings

Contrastive Tension State of the art Semantic Sentence Embeddings Published Paper · Huggingface Models · Report Bug Overview This is the official code

Code for paper PairRE: Knowledge Graph Embeddings via Paired Relation Vectors.

PairRE Code for paper PairRE: Knowledge Graph Embeddings via Paired Relation Vectors. This implementation of PairRE for Open Graph Benchmak datasets (

Reliable probability face embeddings
Reliable probability face embeddings

ProbFace, arxiv This is a demo code of training and testing [ProbFace] using Tensorflow. ProbFace is a reliable Probabilistic Face Embeddging (PFE) me

 UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus
UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus

UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus General info This is

🤖 A Python library for learning and evaluating knowledge graph embeddings
🤖 A Python library for learning and evaluating knowledge graph embeddings

PyKEEN PyKEEN (Python KnowlEdge EmbeddiNgs) is a Python package designed to train and evaluate knowledge graph embedding models (incorporating multi-m

Implementation of Rotary Embeddings, from the Roformer paper, in Pytorch

Rotary Embeddings - Pytorch A standalone library for adding rotary embeddings to transformers in Pytorch, following its success as relative positional

A PyTorch Implementation of
A PyTorch Implementation of "Watch Your Step: Learning Node Embeddings via Graph Attention" (NeurIPS 2018).

Attention Walk ⠀⠀ A PyTorch Implementation of Watch Your Step: Learning Node Embeddings via Graph Attention (NIPS 2018). Abstract Graph embedding meth

Large scale embeddings on a single machine.

Marius Marius is a system under active development for training embeddings for large-scale graphs on a single machine. Training on large scale graphs

Owner
João Pedro Rodrigues Mattos
Undergraduate Research Assistant, sponsored by FAPESP - Machine Learning | Web Development | Human Computer Interface
João Pedro Rodrigues Mattos
Scikit-event-correlation - Event Correlation and Forecasting over High Dimensional Streaming Sensor Data algorithms

scikit-event-correlation Event Correlation and Changing Detection Algorithm Theo

Intellia ICT 5 Oct 30, 2022
Event-forecasting - Event Forecasting Algorithms With Python

event-forecasting Event Forecasting Algorithms Theory Correlating events in comp

Intellia ICT 4 Feb 15, 2022
Event sourced bank - A wide-and-shallow example using the Python event sourcing library

Event Sourced Bank A "wide but shallow" example of using the Python event sourci

null 3 Mar 9, 2022
Implementation of "GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings" in PyTorch

PyGAS: Auto-Scaling GNNs in PyG PyGAS is the practical realization of our G NN A uto S cale (GAS) framework, which scales arbitrary message-passing GN

Matthias Fey 139 Dec 25, 2022
Implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTorch

Neural Distance Embeddings for Biological Sequences Official implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTo

Gabriele Corso 56 Dec 23, 2022
Repo for "Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks"

Summary This is the code for the paper Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks by Yanxiang Wang, Xian Zh

zhangxian 54 Jan 3, 2023
This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CNPs), Neural Processes (NPs), Attentive Neural Processes (ANPs).

The Neural Process Family This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CN

DeepMind 892 Dec 28, 2022
Joint detection and tracking model named DEFT, or ``Detection Embeddings for Tracking.

DEFT: Detection Embeddings for Tracking DEFT: Detection Embeddings for Tracking, Mohamed Chaabane, Peter Zhang, J. Ross Beveridge, Stephen O'Hara

Mohamed Chaabane 253 Dec 18, 2022
Learning embeddings for classification, retrieval and ranking.

StarSpace StarSpace is a general-purpose neural model for efficient learning of entity embeddings for solving a wide variety of problems: Learning wor

Facebook Research 3.8k Dec 22, 2022
Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation

Unseen Object Clustering: Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation Introduction In this work, we propose a new method

NVIDIA Research Projects 132 Dec 13, 2022