This repository has a implementations of data augmentation for NLP for Japanese.

Overview

daaja

This repository has a implementations of data augmentation for NLP for Japanese:

Install

pip install daaja

How to use

EDA: Easy Data Augmentation Techniques for Boosting Performance on Text Classification Tasks

Command

python -m aug_ja.eda.run --input input.tsv --output data_augmentor.tsv

The format of input.tsv is as follows:

1	この映画はとてもおもしろい
0	つまらない映画だった

In Python

from aug_ja.eda import EasyDataAugmentor
augmentor = EasyDataAugmentor(alpha_sr=0.1, alpha_ri=0.1, alpha_rs=0.1, p_rd=0.1, num_aug=4)
text = "日本語でデータ拡張を行う"
aug_texts = augmentor.augments(text)
print(aug_texts)
# ['日本語でを拡張データ行う', '日本語でデータ押広げるを行う', '日本語でデータ拡張を行う', '日本語で智見拡張を行う', '日本語でデータ拡張を行う']

An Analysis of Simple Data Augmentation for Named Entity Recognition

Command

python -m aug_ja.ner_sda.run --input input.tsv --output data_augmentor.tsv

The format of input.tsv is as follows:

	O
	O
田中	B-PER
	O
いい	O
ます	O

In Python

from daaja.ner_sda import SimpleDataAugmentationforNER
tokens_list = [
    ["私", "は", "田中", "と", "いい", "ます"],
    ["筑波", "大学", "に", "所属", "して", "ます"],
    ["今日", "から", "筑波", "大学", "に", "通う"],
    ["茨城", "大学"],
]
labels_list = [
    ["O", "O", "B-PER", "O", "O", "O"],
    ["B-ORG", "I-ORG", "O", "O", "O", "O"],
    ["B-DATE", "O", "B-ORG", "I-ORG", "O", "O"],
    ["B-ORG", "I-ORG"],
]
augmentor = SimpleDataAugmentationforNER(tokens_list=tokens_list, labels_list=labels_list,
                                            p_power=1, p_lwtr=1, p_mr=1, p_sis=1, p_sr=1, num_aug=4)
tokens = ["吉田", "さん", "は", "株式", "会社", "A", "に", "出張", "予定", "だ"]
labels = ["B-PER", "O", "O", "B-ORG", "I-ORG", "I-ORG", "O", "O", "O", "O"]
augmented_tokens_list, augmented_labels_list = augmentor.augments(tokens, labels)
print(augmented_tokens_list)
# [['吉田', 'さん', 'は', '株式', '会社', 'A', 'に', '出張', '志す', 'だ'],
#  ['吉田', 'さん', 'は', '株式', '大学', '大学', 'に', '出張', '予定', 'だ'],
#  ['吉田', 'さん', 'は', '株式', '会社', 'A', 'に', '出張', '予定', 'だ'],
#  ['吉田', 'さん', 'は', '筑波', '大学', 'に', '出張', '予定', 'だ'],
#  ['吉田', 'さん', 'は', '株式', '会社', 'A', 'に', '出張', '予定', 'だ']]
print(augmented_labels_list)
# [['B-PER', 'O', 'O', 'B-ORG', 'I-ORG', 'I-ORG', 'O', 'O', 'O', 'O'],
#  ['B-PER', 'O', 'O', 'B-ORG', 'I-ORG', 'I-ORG', 'O', 'O', 'O', 'O'],
#  ['B-PER', 'O', 'O', 'B-ORG', 'I-ORG', 'I-ORG', 'O', 'O', 'O', 'O'],
#  ['B-PER', 'O', 'O', 'B-ORG', 'I-ORG', 'O', 'O', 'O', 'O'],
#  ['B-PER', 'O', 'O', 'B-ORG', 'I-ORG', 'I-ORG', 'O', 'O', 'O', 'O']]

Reference

Comments
  • too many progress bars

    too many progress bars

    When I use EasyDataAugmentor in the train process, there are too many progress bars in the console.

    So, can you make this line 19 tqdm selectable on-off when we define EasyDataAugmentor? https://github.com/kajyuuen/daaja/blob/12835943868d43f5c248cf1ea87ab60f67a6e03d/daaja/flows/sequential_flow.py#L19

    opened by Yongtae723 6
  • from daaja.methods.eda.easy_data_augmentor import EasyDataAugmentorにてエラー

    from daaja.methods.eda.easy_data_augmentor import EasyDataAugmentorにてエラー

    daajaをpipインストール後、from daaja.methods.eda.easy_data_augmentor import EasyDataAugmentorを行うと、 以下のエラーとなる。 ConnectionError: HTTPConnectionPool(host='compling.hss.ntu.edu.sg', port=80): Max retries exceeded with url: /wnja/data/1.1/wnjpn.db.gz (Caused by NewConnectionError('<urllib3.connection.HTTPConnection object at 0x7f3b6a6cced0>: Failed to establish a new connection: [Errno 110] Connection timed out'))

    opened by naoki1213mj 5
  • is it possible to use on GPU device?

    is it possible to use on GPU device?

    Hi!

    thank you for the great library. when I train with this augmentation, this takes so much more time than forward and backward process.

    therefore, can we possibly use this augmentation on GPU to save time?

    thank you

    opened by Yongtae723 3
  • Bump joblib from 1.1.0 to 1.2.0

    Bump joblib from 1.1.0 to 1.2.0

    Bumps joblib from 1.1.0 to 1.2.0.

    Changelog

    Sourced from joblib's changelog.

    Release 1.2.0

    • Fix a security issue where eval(pre_dispatch) could potentially run arbitrary code. Now only basic numerics are supported. joblib/joblib#1327

    • Make sure that joblib works even when multiprocessing is not available, for instance with Pyodide joblib/joblib#1256

    • Avoid unnecessary warnings when workers and main process delete the temporary memmap folder contents concurrently. joblib/joblib#1263

    • Fix memory alignment bug for pickles containing numpy arrays. This is especially important when loading the pickle with mmap_mode != None as the resulting numpy.memmap object would not be able to correct the misalignment without performing a memory copy. This bug would cause invalid computation and segmentation faults with native code that would directly access the underlying data buffer of a numpy array, for instance C/C++/Cython code compiled with older GCC versions or some old OpenBLAS written in platform specific assembly. joblib/joblib#1254

    • Vendor cloudpickle 2.2.0 which adds support for PyPy 3.8+.

    • Vendor loky 3.3.0 which fixes several bugs including:

      • robustly forcibly terminating worker processes in case of a crash (joblib/joblib#1269);

      • avoiding leaking worker processes in case of nested loky parallel calls;

      • reliability spawn the correct number of reusable workers.

    Release 1.1.1

    • Fix a security issue where eval(pre_dispatch) could potentially run arbitrary code. Now only basic numerics are supported. joblib/joblib#1327
    Commits
    • 5991350 Release 1.2.0
    • 3fa2188 MAINT cleanup numpy warnings related to np.matrix in tests (#1340)
    • cea26ff CI test the future loky-3.3.0 branch (#1338)
    • 8aca6f4 MAINT: remove pytest.warns(None) warnings in pytest 7 (#1264)
    • 067ed4f XFAIL test_child_raises_parent_exits_cleanly with multiprocessing (#1339)
    • ac4ebd5 MAINT add back pytest warnings plugin (#1337)
    • a23427d Test child raises parent exits cleanly more reliable on macos (#1335)
    • ac09691 [MAINT] various test updates (#1334)
    • 4a314b1 Vendor loky 3.2.0 (#1333)
    • bdf47e9 Make test_parallel_with_interactively_defined_functions_default_backend timeo...
    • Additional commits viewable in compare view

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 0
  • Implement Data Augmentation using Pre-trained Transformer Models

    Implement Data Augmentation using Pre-trained Transformer Models

    opened by kajyuuen 0
  • Implement Contextual Augmentation

    Implement Contextual Augmentation

    opened by kajyuuen 0
  • Implement MixText

    Implement MixText

    opened by kajyuuen 0
Releases(v0.0.7)
Owner
Koga Kobayashi
Koga Kobayashi
Analyse japanese ebooks using MeCab to determine the difficulty level for japanese learners

japanese-ebook-analysis This aim of this project is to make analysing the contents of a japanese ebook easy and streamline the process for non-technic

Christoffer Aakre 14 Jul 23, 2022
Yomichad - a Japanese pop-up dictionary that can display readings and English definitions of Japanese words

Yomichad is a Japanese pop-up dictionary that can display readings and English definitions of Japanese words, kanji, and optionally named entities. It is similar to yomichan, 10ten, and rikaikun in spirit, but targets qutebrowser.

Jonas Belouadi 7 Nov 7, 2022
TextAttack 🐙 is a Python framework for adversarial attacks, data augmentation, and model training in NLP

TextAttack ?? Generating adversarial examples for NLP models [TextAttack Documentation on ReadTheDocs] About • Setup • Usage • Design About TextAttack

QData 2.2k Jan 3, 2023
this repository has datasets containing information of Uber pickups in NYC from April 2014 to September 2014 and January to June 2015. data Analysis , virtualization and some insights are gathered here

uber-pickups-analysis Data Source: https://www.kaggle.com/fivethirtyeight/uber-pickups-in-new-york-city Information about data set The dataset contain

null 1 Nov 2, 2021
Grading tools for Advanced NLP (11-711)Grading tools for Advanced NLP (11-711)

Grading tools for Advanced NLP (11-711) Installation You'll need docker and unzip to use this repo. For docker, visit the official guide to get starte

Hao Zhu 2 Sep 27, 2022
Code for producing Japanese GPT-2 provided by rinna Co., Ltd.

japanese-gpt2 This repository provides the code for training Japanese GPT-2 models. This code has been used for producing japanese-gpt2-medium release

rinna Co.,Ltd. 491 Jan 7, 2023
Sentence boundary disambiguation tool for Japanese texts (日本語文境界判定器)

Bunkai Bunkai is a sentence boundary (SB) disambiguation tool for Japanese texts. Quick Start $ pip install bunkai $ echo -e '宿を予約しました♪!まだ2ヶ月も先だけど。早すぎ

Megagon Labs 160 Dec 23, 2022
A fast Text-to-Speech (TTS) model. Work well for English, Mandarin/Chinese, Japanese, Korean, Russian and Tibetan (so far). 快速语音合成模型,适用于英语、普通话/中文、日语、韩语、俄语和藏语(当前已测试)。

简体中文 | English 并行语音合成 [TOC] 新进展 2021/04/20 合并 wavegan 分支到 main 主分支,删除 wavegan 分支! 2021/04/13 创建 encoder 分支用于开发语音风格迁移模块! 2021/04/13 softdtw 分支 支持使用 Sof

Atomicoo 161 Dec 19, 2022
Japanese synonym library

chikkarpy chikkarpyはchikkarのPython版です。 chikkarpy is a Python version of chikkar. chikkarpy は Sudachi 同義語辞書を利用し、SudachiPyの出力に同義語展開を追加するために開発されたライブラリです。

Works Applications 48 Dec 14, 2022
AllenNLP integration for Shiba: Japanese CANINE model

Allennlp Integration for Shiba allennlp-shiab-model is a Python library that provides AllenNLP integration for shiba-model. SHIBA is an approximate re

Shunsuke KITADA 12 Feb 16, 2022
Codes to pre-train Japanese T5 models

t5-japanese Codes to pre-train a T5 (Text-to-Text Transfer Transformer) model pre-trained on Japanese web texts. The model is available at https://hug

Megagon Labs 37 Dec 25, 2022
Auto translate textbox from Japanese to English or Indonesia

priconne-auto-translate Auto translate textbox from Japanese to English or Indonesia How to use Install python first, Anaconda is recommended Install

Aji Priyo Wibowo 5 Aug 25, 2022
Code for evaluating Japanese pretrained models provided by NTT Ltd.

japanese-dialog-transformers 日本語の説明文はこちら This repository provides the information necessary to evaluate the Japanese Transformer Encoder-decoder dialo

NTT Communication Science Laboratories 216 Dec 22, 2022
Script to download some free japanese lessons in portuguse from NHK

Nihongo_nhk This is a script to download some free japanese lessons in portuguese from NHK. It can be executed by installing the packages with: pip in

Matheus Alves 2 Jan 6, 2022
An open collection of annotated voices in Japanese language

声庭 (Koniwa): オープンな日本語音声とアノテーションのコレクション Koniwa (声庭): An open collection of annotated voices in Japanese language 概要 Koniwa(声庭)は利用・修正・再配布が自由でオープンな音声とアノテ

Koniwa project 32 Dec 14, 2022
Japanese Long-Unit-Word Tokenizer with RemBertTokenizerFast of Transformers

Japanese-LUW-Tokenizer Japanese Long-Unit-Word (国語研長単位) Tokenizer for Transformers based on 青空文庫 Basic Usage >>> from transformers import RemBertToken

Koichi Yasuoka 3 Dec 22, 2021
PyJPBoatRace: Python-based Japanese boatrace tools 🚤

pyjpboatrace :speedboat: provides you with useful tools for data analysis and auto-betting for boatrace.

null 5 Oct 29, 2022
aMLP Transformer Model for Japanese

aMLP-japanese Japanese aMLP Pretrained Model aMLPとは、Liu, Daiらが提案する、Transformerモデルです。 ざっくりというと、BERTの代わりに使えて、より性能の良いモデルです。 詳しい解説は、こちらの記事などを参考にしてください。 この

tanreinama 13 Aug 11, 2022