A PyTorch Implementation of "Neural Arithmetic Logic Units"

Overview

Neural Arithmetic Logic Units

[WIP]

This is a PyTorch implementation of Neural Arithmetic Logic Units by Andrew Trask, Felix Hill, Scott Reed, Jack Rae, Chris Dyer and Phil Blunsom.

Drawing

API

from models import *

# single layer modules
NeuralAccumulatorCell(in_dim, out_dim)
NeuralArithmeticLogicUnitCell(in_dim, out_dim)

# stacked layers
NAC(num_layers, in_dim, hidden_dim, out_dim)
NALU(num_layers, in_dim, hidden_dim, out_dim)

Experiments

To reproduce "Numerical Extrapolation Failures in Neural Networks" (Section 1.1), run:

python failures.py

This should generate the following plot:

Drawing

To reproduce "Simple Function Learning Tasks" (Section 4.1), run:

python function_learning.py

This should generate a text file called interpolation.txt with the following results. (Currently only supports interpolation, I'm working on the rest)

Relu6 None NAC NALU
a + b 4.472 0.132 0.154 0.157
a - b 85.727 2.224 2.403 34.610
a * b 89.257 4.573 5.382 1.236
a / b 97.070 60.594 5.730 3.042
a ^ 2 89.987 2.977 4.718 1.117
sqrt(a) 5.939 40.243 7.263 1.119

Notes

  • RMSprop works really well with NAC and NALU
  • high learning rate (0.01) does a good job as well
You might also like...
A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch

This repository holds NVIDIA-maintained utilities to streamline mixed precision and distributed training in Pytorch. Some of the code here will be included in upstream Pytorch eventually. The intention of Apex is to make up-to-date utilities available to users as quickly as possible.

Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch
Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch

30 Days Of Machine Learning Using Pytorch Objective of the repository is to learn and build machine learning models using Pytorch. List of Algorithms

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch
Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

The Incredible PyTorch: a curated list of tutorials, papers, projects, communities and more relating to PyTorch.
The Incredible PyTorch: a curated list of tutorials, papers, projects, communities and more relating to PyTorch.

This is a curated list of tutorials, projects, libraries, videos, papers, books and anything related to the incredible PyTorch. Feel free to make a pu

Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

A bunch of random PyTorch models using PyTorch's C++ frontend
A bunch of random PyTorch models using PyTorch's C++ frontend

PyTorch Deep Learning Models using the C++ frontend Gettting started Clone the repo 1. https://github.com/mrdvince/pytorchcpp 2. cd fashionmnist or

PyTorch Autoencoders - Implementing a Variational Autoencoder (VAE) Series in Pytorch.

PyTorch Autoencoders Implementing a Variational Autoencoder (VAE) Series in Pytorch. Inspired by this repository Model List check model paper conferen

PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices.

PyTorch-LIT PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices. With

Comments
  • Calculating W

    Calculating W

    https://github.com/kevinzakka/NALU-pytorch/blob/002c97f21ebd067b577e9c218b154cf68e867d31/models/nalu.py#L28

    Isn't it that according to the paper, W is calculated as below ?: W = tanh(Wˆ ) * σ(Mˆ )

    And shouldn't the NALU's "a" NAC and the "m" NAC share the W ?: I quote from the paper:

    (NALU) uses two NACs with tied weights ...

    opened by pushkarparanjpe 2
  • NAC fix

    NAC fix

    The NeuralAccumulatorCell class has a bug in it that turns it into a simple linear cell. The way it's written right now, the W_hat and M_hat are not updated and the tanh and sigmoid don't do anything.

    I go into more detail in this notebook: https://github.com/vrxacs/NALU/blob/master/fauxNAC.ipynb

    opened by vrxacs 1
  • Clarification on Multiplication results

    Clarification on Multiplication results

    According to the functional learning results, NAC performs comparable to NALU on the multiplication task. However, there's no means that NAC can learn multiplication. Indeed in the original paper's results, NAC performs even worse than ReLU6. Do you have idea what's happening here?

    opened by ssydasheng 0
  • The generation of training data is wrong

    The generation of training data is wrong

    According to the paper, for the simple function learning task, we first generate n, m, p, q randomly. But they are consistent for all training samples. (Appendix B)

    But in your code, you use different n, m, p, q for every record.

    https://github.com/kevinzakka/NALU-pytorch/blob/8ddca091f1282575766e9aaaa7657a19385873ef/function_learning.py#L31-L32

    This doesn't make sense to me.

    I think the design of training data is to let the first NALU layer learn how to add input and get a, b, and let the second NALU layer perform the arithmetic operator (i.e. a+b, a-b). So n, m, p, q should be consistent for all training samples. Otherwise, NALU learns nothing.

    opened by merrymercy 1
Owner
Kevin Zakka
Kevin Zakka
An essential implementation of BYOL in PyTorch + PyTorch Lightning

Essential BYOL A simple and complete implementation of Bootstrap your own latent: A new approach to self-supervised Learning in PyTorch + PyTorch Ligh

Enrico Fini 48 Sep 27, 2022
RealFormer-Pytorch Implementation of RealFormer using pytorch

RealFormer-Pytorch Implementation of RealFormer using pytorch. Includes comparison with classical Transformer on image classification task (ViT) wrt C

Simo Ryu 90 Dec 8, 2022
A PyTorch implementation of the paper Mixup: Beyond Empirical Risk Minimization in PyTorch

Mixup: Beyond Empirical Risk Minimization in PyTorch This is an unofficial PyTorch implementation of mixup: Beyond Empirical Risk Minimization. The co

Harry Yang 121 Dec 17, 2022
A pytorch implementation of Pytorch-Sketch-RNN

Pytorch-Sketch-RNN A pytorch implementation of https://arxiv.org/abs/1704.03477 In order to draw other things than cats, you will find more drawing da

Alexis David Jacq 172 Dec 12, 2022
PyTorch implementation of Advantage async actor-critic Algorithms (A3C) in PyTorch

Advantage async actor-critic Algorithms (A3C) in PyTorch @inproceedings{mnih2016asynchronous, title={Asynchronous methods for deep reinforcement lea

LEI TAI 111 Dec 8, 2022
Pytorch-diffusion - A basic PyTorch implementation of 'Denoising Diffusion Probabilistic Models'

PyTorch implementation of 'Denoising Diffusion Probabilistic Models' This reposi

Arthur Juliani 76 Jan 7, 2023
Fang Zhonghao 13 Nov 19, 2022
RETRO-pytorch - Implementation of RETRO, Deepmind's Retrieval based Attention net, in Pytorch

RETRO - Pytorch (wip) Implementation of RETRO, Deepmind's Retrieval based Attent

Phil Wang 556 Jan 4, 2023
HashNeRF-pytorch - Pure PyTorch Implementation of NVIDIA paper on Instant Training of Neural Graphics primitives

HashNeRF-pytorch Instant-NGP recently introduced a Multi-resolution Hash Encodin

Yash Sanjay Bhalgat 616 Jan 6, 2023
Generic template to bootstrap your PyTorch project with PyTorch Lightning, Hydra, W&B, and DVC.

NN Template Generic template to bootstrap your PyTorch project. Click on Use this Template and avoid writing boilerplate code for: PyTorch Lightning,

Luca Moschella 520 Dec 30, 2022