Learn Blockchains by Building One, A simple Blockchain in Python using Flask as a micro web framework.

Overview

Blockchain

forthebadge forthebadge forthebadge

Learn Blockchains by Building One Yourself

Installation

  1. Make sure Python 3.6+ is installed.
  2. Install Flask Web Framework.
  3. Clone this repository
    $ git clone https://github.com/krvaibhaw/blockchain.git
  1. Change Directory
    $ cd blockchain
  1. Install requirements
    $ pip install requirements.txt
  1. Run the server:
    $ python blockchain.py 
  1. Head to the Web brouser and visit
    http://127.0.0.1:5000/

Introduction

Blockchain is a specific type of database. It differs from a typical database in the way it stores information; blockchains store data in blocks that are then chained together. As new data comes in it is entered into a fresh block. Once the block is filled with data it is chained onto the previous block, which makes the data chained together in chronological order. Different types of information can be stored on a blockchain but the most common use so far has been as a ledger for transactions.

What is Blockchain?

A blockchain is essentially a digital ledger of transactions that is duplicated and distributed across the entire network of computer systems on the blockchain. It is a growing list of records, called blocks, that are linked together using cryptography. Each block contains a cryptographic hash of the previous block, a timestamp, and transaction data (generally represented as a Merkle tree). The timestamp proves that the transaction data existed when the block was published in order to get into its hash.

As blocks each contain information about the block previous to it (by cryptographic hash of the previous block), they form a chain, with each additional block reinforcing the ones before it. Therefore, blockchains are resistant to modification of their data because once recorded, the data in any given block cannot be altered retroactively without altering all subsequent blocks.

How does it works?

Blockchains are typically managed by a peer-to-peer network for use as a publicly distributed ledger, where nodes collectively adhere to a protocol to communicate and validate new blocks. Although blockchain records are not unalterable as forks are possible, blockchains may be considered secure by design and exemplify a distributed computing system with high Byzantine fault tolerance.

Why Blockchain?

  • Immutable: Blockchains are resistant to modification of their data because once recorded, the data in any given block cannot be altered retroactively without altering all subsequent blocks.

  • Decentralized: It doesn’t have any governing authority or a single person looking after the framework. Rather a group of nodes maintains the network making it decentralized. It means :

      -> Transparency
      -> User Control
      -> Less Prone to Breakdown
      -> Less chance of Failure.
      -> No Third-Party
    
  • Enhanced Security: If someone wants to corrupt the network, he/she would have to alter every data stored on every node in the network. There could be millions and millions of people, where everyone has the same copy of the ledger.

  • Distributed Ledgers: The ledger on the network is maintained by all other users on the system. This distributed computational power across the computers to ensure a better outcome. It ensures :

      -> No Malicious Changes
      -> Ownership of Verification
      -> Quick Response
      -> Managership
      -> No Extra Favors
    
  • Consensus: The architecture is cleverly designed, and consensus algorithms are at the core of this architecture. The consensus is a decision-making process for the group of nodes active on the network. The consensus is responsible for the network being trustless. Nodes might not trust each other, but they can trust the algorithms that run at the core of it. That’s why every decision on the network is a winning scenario for the blockchain.

  • True Traceability: With blockchain, the supply chain becomes more transparent than ever, as compared to traditional supply chain, where it is hard to trace items that can lead to multiple problems, including theft, counterfeit, and loss of goods.

Understanding the Program

Firstly, we defined the structure of our block, which contains, block index, timestamp of when it has been created, proof of work, along with previous hash i.e., the hash of previous block. In real case seanario along with these there are other contents such as a body or transaction list, etc.

    def createblock(self, proof, prevhash):
        
        # Defining the structure of our block
        block = {'index': len(self.chain) + 1,
                 'timestamp': str(datetime.datetime.now()),
                 'proof': proof,
                 'prevhash': prevhash}

        # Establishing a cryptographic link
        self.chain.append(block)
        return block

The genesis block is the first block in any blockchain-based protocol. It is the basis on which additional blocks are added to form a chain of blocks, hence the term blockchain. This block is sometimes referred to Block 0. Every block in a blockchain stores a reference to the previous block. In the case of Genesis Block, there is no previous block for reference.

    def __init__(self):
        
        self.chain = []
        
        # Creating the Genesis Block
        self.createblock(proof = 1, prevhash = "0")

Proof of Work(PoW) is the original consensus algorithm in a blockchain network. The algorithm is used to confirm the transaction and creates a new block to the chain. In this algorithm, minors (a group of people) compete against each other to complete the transaction on the network. The process of competing against each other is called mining. As soon as miners successfully created a valid block, he gets rewarded.

    def proofofwork(self, prevproof):
        newproof = 1
        checkproof = False

        # Defining crypto puzzle for the miners and iterating until able to mine it 
        while checkproof is False:
            op = hashlib.sha256(str(newproof**2 - prevproof**5).encode()).hexdigest()
            
            if op[:5] == "00000":
                checkproof = True
            else:
                newproof += 1
        
        return newproof

Chain validation is an important part of the blockchain, it is used to validate weather tha blockchain is valid or not. There are two checks performed.

First check, for each block check if the previous hash field is equal to the hash of the previous block i.e. to verify the cryptographic link.

Second check, to check if the proof of work for each block is valid according to problem defined in proofofwork() function i.e. to check if the correct block is mined or not.

    def ischainvalid(self, chain):
        prevblock = chain[0]   # Initilized to Genesis block
        blockindex = 1         # Initilized to Next block

        while blockindex < len(chain):

            # First Check : To verify the cryptographic link
            
            currentblock = chain[blockindex]
            if currentblock['prevhash'] != self.hash(prevblock):
                return False

            # Second Check : To check if the correct block is mined or not

            prevproof = prevblock['proof']
            currentproof = currentblock['proof']
            op = hashlib.sha256(str(currentproof**2 - prevproof**5).encode()).hexdigest()
            
            if op[:5] != "00000":
                return True

            prevblock = currentblock
            blockindex += 1

        return True

Feel free to follow along the code provided along with mentioned comments for
better understanding of the project, if any issues feel free to reach me out.

Contributing

Contributions are welcome!
Please feel free to submit a Pull Request.

You might also like...
A python-jvm wrapper for interacting with the Ergo blockchain.

ergpy A python-jvm wrapper for interacting with the Ergo blockchain. Usage Requires Java 8 or higher to be installed on system pip install JPype1 pip

Ethereum ETL lets you convert blockchain data into convenient formats like CSVs and relational databases.

Python scripts for ETL (extract, transform and load) jobs for Ethereum blocks, transactions, ERC20 / ERC721 tokens, transfers, receipts, logs, contracts, internal transactions.

Tools for running airdrop and token distribution campaigns on the Solana blockchain.
Tools for running airdrop and token distribution campaigns on the Solana blockchain.

Overview This repository contains some of the scripts we have used for running our airdrop campaigns and other distributions. Initially, all of these

 seno-blockchain is just a fork of Chia, designed to be efficient, decentralized, and secure
seno-blockchain is just a fork of Chia, designed to be efficient, decentralized, and secure

seno-blockchain https://seno.uno Seno is just a fork of Chia, designed to be efficient, decentralized, and secure. Here are some of the features and b

blockchain address database

Blockchain Address Ownership Database The database is in data/addresses.db This is a SQLite database of addresses from several blockchains. It's obtai

A repository for Algogenous Smart Contracts created on the Algorand Blockchain.

Smart Contacts Alogrand Smart Contracts using Choice Coin. Read Docs for how to implement Algogenous Smart Contracts for your own applications. Smart

A repository for Algogenous Smart Contracts created on the Algorand Blockchain.

Smart Contacts This Repository is dedicated to code for Alogrand Smart Contracts using Choice Coin. Read Docs for how to implement Algogenous Smart Co

High Performance Blockchain Deserializer

bitcoin_explorer is an efficient library for reading bitcoin-core binary blockchain file as a database (utilising multi-threading).

An BlockChain Based solution for storing the medical records

Blockchain-based Medical Records 📄 Abstract Blockchain has the ability to keep an incorruptible, decentralized, and transparent log of all patient da

Owner
Vaibhaw
A passionate thinker, techno freak, comic lover, a curious computer engineering student. Machine Learning, Artificial Intelligence, Linux, Web Development.
Vaibhaw
Atomkraft - Lightweight e2e testing for cosmos blockchains

Atomkraft End-to-end testing of Cosmos blockchains should be easy and reproducib

Informal Systems 57 Dec 16, 2022
A little side-project API for me to learn about Blockchain and Tokens

BlockChain API I built this little side project to learn more about Blockchain and Tokens. It might be maintained and implemented to other projects bu

Loïk Mallat 1 Nov 16, 2021
This is simple Blockchain ,miner and wallet to send crypto using python

pythonBlockchain-SImple This is simple Blockchain ,miner and wallet to send crypto using python It is simple Blocchain so it can only dobasic work usi

null 3 Nov 22, 2022
A simple Python tool to help anyone use Liquidity Pools on the BitShares blockchain.

ACCOUNT AND ACTIVE KEY ARE NOT PERSISTENT, YOU WILL NEED TO ENTER THEM EACH TIME YOU LAUNCH THE APP (but not every transaction. that's a win). If / wh

Brendan Jensen 17 Jun 15, 2022
Simple crypto & blockchain implementation written in Python

JaamoCoin - simple Python blockchain example This is a very simple blockchain example written in Python. Based on this tutorial: https://medium.com/co

Jaakko Alajoki 1 Jan 7, 2022
Ceres is a combine harvester designed to harvest plots for Chia blockchain and its forks using proof-of-space-and-time(PoST) consensus algorithm.

Ceres Combine-Harvester Ceres is a combine harvester designed to harvest plots for Chia blockchain and its forks using proof-of-space-and-time(PoST) c

null 38 Nov 14, 2022
This demo is an on-chain NFT auction using smart contracts on the Algorand blockchain.

Algorand Auction Demo This demo is an on-chain NFT auction using smart contracts on the Algorand blockchain. Usage The file auction/operations.py prov

null 1 Jan 27, 2022
Python implementation of a blockchain.

The goal of this project is to explain and to make clearer how is a blockchain structured at the very core. It's not built with the intention to replicate an advanced blockchain like Bitcoin or Ethereum

Rahul raikwar 5 Jan 28, 2022
Blockchain Python Implementation

Blockchain Python Implementation

0918nobita 2 Nov 21, 2021
Python repo to create blockchain CSVs

staketaxcsv Python repo to create blockchain CSVs for Terra (LUNA), Solana (SOL), and Cosmos (ATOM). CSV codebase for stake.tax Community contribution

null 187 Dec 31, 2022