Fast, accurate and reliable software for algebraic CT reconstruction

Overview

KCT CBCT

Fast, accurate and reliable software for algebraic CT reconstruction.

This set of software tools includes OpenCL implementation of modern CT and CBCT reconstruction algorithms including unpublished algorithms by the author. Initially, the focus was on CT reconstruction using Krylov LSQR and CGLS methods. Gradually, other widely used methods such as OS-SIRT are added. Initially, the software was based on the idea of a projector that directly computes the projections of individual voxels onto pixels using the volume integrals of the voxel cuts. The author intends to publish a paper on this cutting voxel projector (CVP) in late 2021. However, the package also includes implementations of the TT projector and the Siddon projector the DD and TR projectors will be implemented in the near future. The code for the CVP projector is optimized using OpenCL local memory and is probably one of the fastest projector implementations ever for algebraic reconstruction.

The package has been tested and is compatible with the AMD Radeon VII Vega 20 GPU and NVIDIA GeForce RTX 2080 Ti GPU. Some routines have been optimized specifically for these GPU architectures. OpenCL code conforms to the OpenCL 1.2 specification and the implementation uses C++ wrappers from OpenCL 1.2. OpenCL 2.0 is not supported due to lack of support from NVidia.

Algorithms

Cutting voxel projector yet to be published.

LSQR algorithm was implemented according to https://doi.org/10.1002/nla.611

CGLS algorithm with delayed residual computation as described in the proceedings of Fully3D conference 2021 Software Implementation of the Krylov Methods Based Reconstruction for the 3D Cone Beam CT Operator Poster and extendend absract can be found in the publications directory

Repositories

The KCT package is hosted on Bitbucket and GitHub

GitHub public repository

git clone https://github.com/kulvait/KCT_cbct.git

Bitbucket public repository

git clone https://bitbucket.org/kulvait/kct_cbct.git

Submodules

Submodules lives in the submodules directory. To clone project including submodules one have to use the following commands

git submodule init
git submodule update

or use the following command when cloning repository

git clone --recurse-submodules

CTIOL

Input output routines for asynchronous thread safe reading/writing CT data. The DEN format read/write is implemented.

CTMAL

Mathematic/Algebraic algorithms for supporting CT data manipulation.

Plog logger

Logger Plog is used for logging. It is licensed under the Mozilla Public License Version 2.0.

CLI11

Comand line parser CLI11. It is licensed under 3 Clause BSD License.

Catch2

Testing framework. Licensed under Boost Software License 1.0.

CTPL

Threadpool library.

Documentation

Documentation is generated using doxygen and lives in doc directory. First the config file for doxygen was prepared runing doxygen -g. Doc files and this file can be written using Markdown syntax, JAVADOC_AUTOBRIEF is set to yes to treat first line of the doc comment as a brief description, comments are of the format

/**Brief description.
*
*Long description
*thay might span multiple lines.
*/

.

Licensing

When there is no other licensing and/or copyright information in the source files of this project, the following apply for the source files in the directories include and src and for CMakeLists.txt file:

Copyright (C) 2018-2021 Vojtěch Kulvait

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, version 3 of the License.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program.  If not, see <https://www.gnu.org/licenses/>.

This licensing applies to the direct source files in the directories include and src of this project and not for submodules.

You might also like...
 Rethinking of Pedestrian Attribute Recognition: A Reliable Evaluation under Zero-Shot Pedestrian Identity Setting
Rethinking of Pedestrian Attribute Recognition: A Reliable Evaluation under Zero-Shot Pedestrian Identity Setting

Pytorch Pedestrian Attribute Recognition: A strong PyTorch baseline of pedestrian attribute recognition and multi-label classification.

[AAAI22] Reliable Propagation-Correction Modulation for Video Object Segmentation
[AAAI22] Reliable Propagation-Correction Modulation for Video Object Segmentation

Reliable Propagation-Correction Modulation for Video Object Segmentation (AAAI22) Preview version paper of this work is available at: https://arxiv.or

This is the unofficial code of  Deep Dual-resolution Networks for Real-time and Accurate Semantic Segmentation of Road Scenes. which achieve state-of-the-art trade-off between accuracy and speed on cityscapes and camvid, without using inference acceleration and extra data Face Library is an open source package for accurate and real-time face detection and recognition
Face Library is an open source package for accurate and real-time face detection and recognition

Face Library Face Library is an open source package for accurate and real-time face detection and recognition. The package is built over OpenCV and us

Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT
Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT

CheXbert: Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT CheXbert is an accurate, automated dee

Python and C++ implementation of
Python and C++ implementation of "MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation". Accepted at LXCV @ CVPR 2021.

MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation This is a PyTorch and LibTorch implementation of MarkerPose: a

A unofficial pytorch implementation of PAN(PSENet2): Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network
A unofficial pytorch implementation of PAN(PSENet2): Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network Requirements pytorch 1.1+ torchvision 0.3+ pyclipper opencv3 gcc

FADNet++: Real-Time and Accurate Disparity Estimation with Configurable Networks

FADNet++: Real-Time and Accurate Disparity Estimation with Configurable Networks

VID-Fusion: Robust Visual-Inertial-Dynamics Odometry for Accurate External Force Estimation
VID-Fusion: Robust Visual-Inertial-Dynamics Odometry for Accurate External Force Estimation

VID-Fusion VID-Fusion: Robust Visual-Inertial-Dynamics Odometry for Accurate External Force Estimation Authors: Ziming Ding , Tiankai Yang, Kunyi Zhan

Owner
Vojtěch Kulvait
2018-2021 PostDoc at Magdeburg University, CT reconstruction
Vojtěch Kulvait
A Planar RGB-D SLAM which utilizes Manhattan World structure to provide optimal camera pose trajectory while also providing a sparse reconstruction containing points, lines and planes, and a dense surfel-based reconstruction.

ManhattanSLAM Authors: Raza Yunus, Yanyan Li and Federico Tombari ManhattanSLAM is a real-time SLAM library for RGB-D cameras that computes the camera

null 117 Dec 28, 2022
"MST++: Multi-stage Spectral-wise Transformer for Efficient Spectral Reconstruction" (CVPRW 2022) & (Winner of NTIRE 2022 Challenge on Spectral Reconstruction from RGB)

MST++: Multi-stage Spectral-wise Transformer for Efficient Spectral Reconstruction (CVPRW 2022) Yuanhao Cai, Jing Lin, Zudi Lin, Haoqian Wang, Yulun Z

Yuanhao Cai 274 Jan 5, 2023
A lightweight deep network for fast and accurate optical flow estimation.

FastFlowNet: A Lightweight Network for Fast Optical Flow Estimation The official PyTorch implementation of FastFlowNet (ICRA 2021). Authors: Lingtong

Tone 161 Jan 3, 2023
A Fast and Accurate One-Stage Approach to Visual Grounding, ICCV 2019 (Oral)

One-Stage Visual Grounding ***** New: Our recent work on One-stage VG is available at ReSC.***** A Fast and Accurate One-Stage Approach to Visual Grou

Zhengyuan Yang 118 Dec 5, 2022
Code for ACM MM2021 paper "Complementary Trilateral Decoder for Fast and Accurate Salient Object Detection"

CTDNet The PyTorch code for ACM MM2021 paper "Complementary Trilateral Decoder for Fast and Accurate Salient Object Detection" Requirements Python 3.6

CVTEAM 28 Oct 20, 2022
Realtime segmentation with ENet, the fast and accurate segmentation net.

Enet This is a realtime segmentation net with almost 22 fps on GTX1080 ti, and the model size is very small with only 28M. This repo contains the infe

JinTian 14 Aug 30, 2022
Receptive Field Block Net for Accurate and Fast Object Detection, ECCV 2018

Receptive Field Block Net for Accurate and Fast Object Detection By Songtao Liu, Di Huang, Yunhong Wang Updatas (2021/07/23): YOLOX is here!, stronger

Liu Songtao 1.4k Dec 21, 2022
PyTorch version of Stable Baselines, reliable implementations of reinforcement learning algorithms.

PyTorch version of Stable Baselines, reliable implementations of reinforcement learning algorithms.

DLR-RM 4.7k Jan 1, 2023
Reliable probability face embeddings

ProbFace, arxiv This is a demo code of training and testing [ProbFace] using Tensorflow. ProbFace is a reliable Probabilistic Face Embeddging (PFE) me

Kaen Chan 34 Dec 31, 2022
PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

null 76 Jan 3, 2023