DeepUME: Learning the Universal Manifold Embedding for Robust Point Cloud Registration
[video] [paper] [supplementary] [data] [thesis]
Introduction
Deep Universal Manifold Embedding (DeepUME) is a learning-based point cloud registration algorithm which achieves fast and accurate global regitration. This repository contains a basic PyTorch implementation of DeepUME. Please refer to our paper for more details.
Usage
This code has been tested on Python 3.6.13, PyTorch 1.4.0 and CUDA 10.1.
Prerequisite
- PyTorch=1.4.0: https://pytorch.org
- h5py
- open3d
- TensorboardX: https://github.com/lanpa/tensorboardX
- Download data to data/.
Training
python main.py --exp_name=deepume --noise=sampling
Testing
python main.py --exp_name=deepume --eval
or
python main.py --exp_name=pretrained --eval --pretrained='pretrained/deepume.t7' --noise=zero_intersec --test_dataset=FAUST