Can you please help me with the following things.
I have create a custom dataset with same structure as docred and tried to train the model. First of all it's not seems training by looking at performace metrics.
Also after some epochs it's gives error and stop training. you can check the following logs.
datasets:
train_path: ./data/datasets/docred_joint/train_joint.json
valid_path: ./data/datasets/docred_joint/dev_joint.json
test_path: null
types_path: ./data/datasets/docred_joint/types.json
model:
model_type: joint_multi_instance
encoder_path: bert-base-cased
tokenizer_path: bert-base-cased
mention_threshold: 0.85
coref_threshold: 0.85
rel_threshold: 0.6
prop_drop: 0.1
meta_embedding_size: 25
size_embeddings_count: 40
ed_embeddings_count: 300
token_dist_embeddings_count: 700
sentence_dist_embeddings_count: 50
position_embeddings_count: 700
sampling:
neg_mention_count: 200
neg_coref_count: 200
neg_relation_count: 200
max_span_size: 10
sampling_processes: 8
neg_mention_overlap_ratio: 0.5
lowercase: false
loss:
mention_weight: 1.0
coref_weight: 1.0
entity_weight: 0.25
relation_weight: 1.0
inference:
valid_batch_size: 1
test_batch_size: 1
max_spans: null
max_coref_pairs: null
max_rel_pairs: null
training:
batch_size: 1
min_epochs: 20
max_epochs: 20
lr: 5.0e-05
lr_warmup: 0.1
weight_decay: 0.01
max_grad_norm: 1.0
accumulate_grad_batches: 1
max_spans: null
max_coref_pairs: null
max_rel_pairs: null
distribution:
gpus: []
accelerator: ''
prepare_data_per_node: false
misc:
store_predictions: true
store_examples: true
flush_logs_every_n_steps: 1000
log_every_n_steps: 1000
deterministic: false
seed: null
cache_path: null
precision: 32
profiler: null
final_valid_evaluate: true
Parse dataset '/content/jerex/data/datasets/docred_joint/train_joint.json': 100% 260/260 [00:02<00:00, 111.80it/s]
Parse dataset '/content/jerex/data/datasets/docred_joint/dev_joint.json': 100% 30/30 [00:00<00:00, 120.30it/s]
Some weights of the model checkpoint at bert-base-cased were not used when initializing JointMultiInstanceModel: ['cls.predictions.bias', 'cls.predictions.transform.dense.weight', 'cls.predictions.transform.dense.bias', 'cls.predictions.decoder.weight', 'cls.seq_relationship.weight', 'cls.seq_relationship.bias', 'cls.predictions.transform.LayerNorm.weight', 'cls.predictions.transform.LayerNorm.bias', 'bert.pooler.dense.weight', 'bert.pooler.dense.bias']
- This IS expected if you are initializing JointMultiInstanceModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
- This IS NOT expected if you are initializing JointMultiInstanceModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
Some weights of JointMultiInstanceModel were not initialized from the model checkpoint at bert-base-cased and are newly initialized: ['mention_localization.linear.weight', 'mention_localization.linear.bias', 'mention_localization.mention_classifier.weight', 'mention_localization.mention_classifier.bias', 'mention_localization.size_embeddings.weight', 'coreference_resolution.coref_linear.weight', 'coreference_resolution.coref_linear.bias', 'coreference_resolution.coref_classifier.weight', 'coreference_resolution.coref_classifier.bias', 'coreference_resolution.coref_ed_embeddings.weight', 'entity_classification.linear.weight', 'entity_classification.linear.bias', 'entity_classification.entity_classifier.weight', 'entity_classification.entity_classifier.bias', 'relation_classification.pair_linear.weight', 'relation_classification.pair_linear.bias', 'relation_classification.rel_linear.weight', 'relation_classification.rel_linear.bias', 'relation_classification.rel_classifier.weight', 'relation_classification.rel_classifier.bias', 'relation_classification.token_distance_embeddings.weight', 'relation_classification.sentence_distance_embeddings.weight', 'relation_classification.entity_type_embeddings.weight']
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
GPU available: True, used: False
TPU available: False, using: 0 TPU cores
/usr/local/lib/python3.7/dist-packages/pytorch_lightning/utilities/distributed.py:52: UserWarning: GPU available but not used. Set the --gpus flag when calling the script.
warnings.warn(*args, **kwargs)
| Name | Type | Params
--------------------------------------------------
0 | model | JointMultiInstanceModel | 113 M
--------------------------------------------------
113 M Trainable params
0 Non-trainable params
113 M Total params
455.678 Total estimated model params size (MB)
Epoch 0: 90% 260/290 [05:11<00:35, 1.20s/it, loss=0.568, v_num=0_0]
Validating: 0it [00:00, ?it/s]
Validating: 0% 0/30 [00:00<?, ?it/s]/usr/local/lib/python3.7/dist-packages/torch/_tensor.py:575: UserWarning: floor_divide is deprecated, and will be removed in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values.
To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor'). (Triggered internally at /pytorch/aten/src/ATen/native/BinaryOps.cpp:467.)
return torch.floor_divide(self, other)
Epoch 0: 100% 290/290 [05:20<00:00, 1.10s/it, loss=0.568, v_num=0_0]
Validating: 100% 30/30 [00:12<00:00, 2.51it/s]Evaluation
--- Entity Mentions ---
type precision recall f1-score support
Binary 0.00 0.00 0.00 111.0
micro 0.00 0.00 0.00 111.0
macro 0.00 0.00 0.00 111.0
--- Clusters (Coreference Resolution) ---
type precision recall f1-score support
Binary 0.00 0.00 0.00 111.0
micro 0.00 0.00 0.00 111.0
macro 0.00 0.00 0.00 111.0
--- Entities ---
type precision recall f1-score support
PRICE 0.00 0.00 0.00 3.0
ALIAS 0.00 0.00 0.00 40.0
LIABILITY 0.00 0.00 0.00 2.0
REFERENCE 0.00 0.00 0.00 34.0
ADDRESS 0.00 0.00 0.00 32.0
micro 0.00 0.00 0.00 111.0
macro 0.00 0.00 0.00 111.0
--- Relations ---
Without entity type
type precision recall f1-score support
ALIAS_ADDRESS 0.00 0.00 0.00 7.0
LIABILITY_PRICE 0.00 0.00 0.00 3.0
ALIAS_REFERENCE 0.00 0.00 0.00 12.0
REFERENCE_ADDRESS 0.00 0.00 0.00 10.0
micro 0.00 0.00 0.00 32.0
macro 0.00 0.00 0.00 32.0
With entity type
type precision recall f1-score support
ALIAS_ADDRESS 0.00 0.00 0.00 7.0
LIABILITY_PRICE 0.00 0.00 0.00 3.0
ALIAS_REFERENCE 0.00 0.00 0.00 12.0
REFERENCE_ADDRESS 0.00 0.00 0.00 10.0
micro 0.00 0.00 0.00 32.0
macro 0.00 0.00 0.00 32.0
Epoch 0: 100% 290/290 [05:24<00:00, 1.12s/it, loss=0.568, v_num=0_0]
tcmalloc: large alloc 1297850368 bytes == 0x56535c070000 @ 0x7fa2102d4615 0x56526cb7b4cc 0x56526cc5b47a 0x56526cb81f0c 0x7fa20ae659e4 0x7fa20ae6e0e4 0x7fa20ae42bf0 0x7fa168968935 0x7fa16896426e 0x7fa16896940a 0x7fa20ae4313e 0x7fa20a8d8f98 0x56526cb7f098 0x56526cbf24d9 0x56526cbecced 0x56526cb7fbda 0x56526cbed915 0x56526cbec9ee 0x56526cb7fbda 0x56526cbf1d00 0x56526cb7fafa 0x56526cbed915 0x56526cbec9ee 0x56526cb7fbda 0x56526cbedc0d 0x56526cbec9ee 0x56526cb7fbda 0x56526cbf1d00 0x56526cb7fafa 0x56526cbedc0d 0x56526cb7fafa
tcmalloc: large alloc 1622319104 bytes == 0x5653a962a000 @ 0x7fa2102d4615 0x56526cb7b4cc 0x56526cc5b47a 0x56526cb81f0c 0x7fa20ae659e4 0x7fa20ae6e0e4 0x7fa20ae42bf0 0x7fa168968935 0x7fa16896426e 0x7fa16896940a 0x7fa20ae4313e 0x7fa20a8d8f98 0x56526cb7f098 0x56526cbf24d9 0x56526cbecced 0x56526cb7fbda 0x56526cbed915 0x56526cbec9ee 0x56526cb7fbda 0x56526cbf1d00 0x56526cb7fafa 0x56526cbed915 0x56526cbec9ee 0x56526cb7fbda 0x56526cbedc0d 0x56526cbec9ee 0x56526cb7fbda 0x56526cbf1d00 0x56526cb7fafa 0x56526cbedc0d 0x56526cb7fafa
Epoch 1: 90% 260/290 [05:23<00:37, 1.24s/it, loss=0.817, v_num=0_0]
Validating: 0it [00:00, ?it/s]
Validating: 0% 0/30 [00:00<?, ?it/s]
Epoch 1: 100% 290/290 [05:31<00:00, 1.14s/it, loss=0.817, v_num=0_0]
Validating: 100% 30/30 [00:12<00:00, 2.49it/s]Evaluation
--- Entity Mentions ---
type precision recall f1-score support
Binary 0.00 0.00 0.00 111.0
micro 0.00 0.00 0.00 111.0
macro 0.00 0.00 0.00 111.0
--- Clusters (Coreference Resolution) ---
type precision recall f1-score support
Binary 0.00 0.00 0.00 111.0
micro 0.00 0.00 0.00 111.0
macro 0.00 0.00 0.00 111.0
--- Entities ---
type precision recall f1-score support
PRICE 0.00 0.00 0.00 3.0
ALIAS 0.00 0.00 0.00 40.0
LIABILITY 0.00 0.00 0.00 2.0
REFERENCE 0.00 0.00 0.00 34.0
ADDRESS 0.00 0.00 0.00 32.0
micro 0.00 0.00 0.00 111.0
macro 0.00 0.00 0.00 111.0
--- Relations ---
Without entity type
type precision recall f1-score support
ALIAS_ADDRESS 0.00 0.00 0.00 7.0
LIABILITY_PRICE 0.00 0.00 0.00 3.0
ALIAS_REFERENCE 0.00 0.00 0.00 12.0
REFERENCE_ADDRESS 0.00 0.00 0.00 10.0
micro 0.00 0.00 0.00 32.0
macro 0.00 0.00 0.00 32.0
With entity type
type precision recall f1-score support
ALIAS_ADDRESS 0.00 0.00 0.00 7.0
LIABILITY_PRICE 0.00 0.00 0.00 3.0
ALIAS_REFERENCE 0.00 0.00 0.00 12.0
REFERENCE_ADDRESS 0.00 0.00 0.00 10.0
micro 0.00 0.00 0.00 32.0
macro 0.00 0.00 0.00 32.0
Epoch 1: 100% 290/290 [05:35<00:00, 1.16s/it, loss=0.817, v_num=0_0]
Epoch 2: 90% 260/290 [05:40<00:39, 1.31s/it, loss=0.343, v_num=0_0]
Validating: 0it [00:00, ?it/s]
Validating: 0% 0/30 [00:00<?, ?it/s]
Epoch 2: 100% 290/290 [05:48<00:00, 1.20s/it, loss=0.343, v_num=0_0]
Validating: 100% 30/30 [00:12<00:00, 2.51it/s]Evaluation
--- Entity Mentions ---
type precision recall f1-score support
Binary 0.00 0.00 0.00 111.0
micro 0.00 0.00 0.00 111.0
macro 0.00 0.00 0.00 111.0
--- Clusters (Coreference Resolution) ---
type precision recall f1-score support
Binary 0.00 0.00 0.00 111.0
micro 0.00 0.00 0.00 111.0
macro 0.00 0.00 0.00 111.0
--- Entities ---
type precision recall f1-score support
PRICE 0.00 0.00 0.00 3.0
ALIAS 0.00 0.00 0.00 40.0
LIABILITY 0.00 0.00 0.00 2.0
REFERENCE 0.00 0.00 0.00 34.0
ADDRESS 0.00 0.00 0.00 32.0
micro 0.00 0.00 0.00 111.0
macro 0.00 0.00 0.00 111.0
--- Relations ---
Without entity type
type precision recall f1-score support
ALIAS_ADDRESS 0.00 0.00 0.00 7.0
LIABILITY_PRICE 0.00 0.00 0.00 3.0
ALIAS_REFERENCE 0.00 0.00 0.00 12.0
REFERENCE_ADDRESS 0.00 0.00 0.00 10.0
micro 0.00 0.00 0.00 32.0
macro 0.00 0.00 0.00 32.0
With entity type
type precision recall f1-score support
ALIAS_ADDRESS 0.00 0.00 0.00 7.0
LIABILITY_PRICE 0.00 0.00 0.00 3.0
ALIAS_REFERENCE 0.00 0.00 0.00 12.0
REFERENCE_ADDRESS 0.00 0.00 0.00 10.0
micro 0.00 0.00 0.00 32.0
macro 0.00 0.00 0.00 32.0
Epoch 2: 100% 290/290 [05:52<00:00, 1.22s/it, loss=0.343, v_num=0_0]
Epoch 3: 90% 260/290 [05:49<00:40, 1.34s/it, loss=0.175, v_num=0_0]
Validating: 0it [00:00, ?it/s]
Validating: 0% 0/30 [00:00<?, ?it/s]
Epoch 3: 100% 290/290 [05:57<00:00, 1.23s/it, loss=0.175, v_num=0_0]
Validating: 100% 30/30 [00:12<00:00, 2.50it/s]Evaluation
--- Entity Mentions ---
type precision recall f1-score support
Binary 0.00 0.00 0.00 111.0
micro 0.00 0.00 0.00 111.0
macro 0.00 0.00 0.00 111.0
--- Clusters (Coreference Resolution) ---
type precision recall f1-score support
Binary 0.00 0.00 0.00 111.0
micro 0.00 0.00 0.00 111.0
macro 0.00 0.00 0.00 111.0
--- Entities ---
type precision recall f1-score support
PRICE 0.00 0.00 0.00 3.0
ALIAS 0.00 0.00 0.00 40.0
LIABILITY 0.00 0.00 0.00 2.0
REFERENCE 0.00 0.00 0.00 34.0
ADDRESS 0.00 0.00 0.00 32.0
micro 0.00 0.00 0.00 111.0
macro 0.00 0.00 0.00 111.0
--- Relations ---
Without entity type
type precision recall f1-score support
ALIAS_ADDRESS 0.00 0.00 0.00 7.0
LIABILITY_PRICE 0.00 0.00 0.00 3.0
ALIAS_REFERENCE 0.00 0.00 0.00 12.0
REFERENCE_ADDRESS 0.00 0.00 0.00 10.0
micro 0.00 0.00 0.00 32.0
macro 0.00 0.00 0.00 32.0
With entity type
type precision recall f1-score support
ALIAS_ADDRESS 0.00 0.00 0.00 7.0
LIABILITY_PRICE 0.00 0.00 0.00 3.0
ALIAS_REFERENCE 0.00 0.00 0.00 12.0
REFERENCE_ADDRESS 0.00 0.00 0.00 10.0
micro 0.00 0.00 0.00 32.0
macro 0.00 0.00 0.00 32.0
Epoch 3: 100% 290/290 [06:01<00:00, 1.25s/it, loss=0.175, v_num=0_0]
Epoch 4: 90% 260/290 [06:16<00:43, 1.45s/it, loss=0.12, v_num=0_0]
Validating: 0it [00:00, ?it/s]
Validating: 0% 0/30 [00:00<?, ?it/s]
Epoch 4: 100% 290/290 [06:25<00:00, 1.33s/it, loss=0.12, v_num=0_0]
Validating: 100% 30/30 [00:12<00:00, 2.39it/s]Evaluation
--- Entity Mentions ---
type precision recall f1-score support
Binary 0.00 0.00 0.00 111.0
micro 0.00 0.00 0.00 111.0
macro 0.00 0.00 0.00 111.0
--- Clusters (Coreference Resolution) ---
type precision recall f1-score support
Binary 0.00 0.00 0.00 111.0
micro 0.00 0.00 0.00 111.0
macro 0.00 0.00 0.00 111.0
--- Entities ---
type precision recall f1-score support
PRICE 0.00 0.00 0.00 3.0
ALIAS 0.00 0.00 0.00 40.0
LIABILITY 0.00 0.00 0.00 2.0
REFERENCE 0.00 0.00 0.00 34.0
ADDRESS 0.00 0.00 0.00 32.0
micro 0.00 0.00 0.00 111.0
macro 0.00 0.00 0.00 111.0
--- Relations ---
Without entity type
type precision recall f1-score support
ALIAS_ADDRESS 0.00 0.00 0.00 7.0
LIABILITY_PRICE 0.00 0.00 0.00 3.0
ALIAS_REFERENCE 0.00 0.00 0.00 12.0
REFERENCE_ADDRESS 0.00 0.00 0.00 10.0
micro 0.00 0.00 0.00 32.0
macro 0.00 0.00 0.00 32.0
With entity type
type precision recall f1-score support
ALIAS_ADDRESS 0.00 0.00 0.00 7.0
LIABILITY_PRICE 0.00 0.00 0.00 3.0
ALIAS_REFERENCE 0.00 0.00 0.00 12.0
REFERENCE_ADDRESS 0.00 0.00 0.00 10.0
micro 0.00 0.00 0.00 32.0
macro 0.00 0.00 0.00 32.0
Epoch 4: 100% 290/290 [06:29<00:00, 1.34s/it, loss=0.12, v_num=0_0]
Epoch 5: 90% 260/290 [06:05<00:42, 1.41s/it, loss=0.117, v_num=0_0]
Validating: 0it [00:00, ?it/s]
Validating: 0% 0/30 [00:00<?, ?it/s]
Epoch 5: 100% 290/290 [06:14<00:00, 1.29s/it, loss=0.117, v_num=0_0]
Validating: 100% 30/30 [00:12<00:00, 2.52it/s]Evaluation
--- Entity Mentions ---
type precision recall f1-score support
Binary 0.00 0.00 0.00 111.0
micro 0.00 0.00 0.00 111.0
macro 0.00 0.00 0.00 111.0
--- Clusters (Coreference Resolution) ---
type precision recall f1-score support
Binary 0.00 0.00 0.00 111.0
micro 0.00 0.00 0.00 111.0
macro 0.00 0.00 0.00 111.0
--- Entities ---
type precision recall f1-score support
PRICE 0.00 0.00 0.00 3.0
ALIAS 0.00 0.00 0.00 40.0
LIABILITY 0.00 0.00 0.00 2.0
REFERENCE 0.00 0.00 0.00 34.0
ADDRESS 0.00 0.00 0.00 32.0
micro 0.00 0.00 0.00 111.0
macro 0.00 0.00 0.00 111.0
--- Relations ---
Without entity type
type precision recall f1-score support
ALIAS_ADDRESS 0.00 0.00 0.00 7.0
LIABILITY_PRICE 0.00 0.00 0.00 3.0
ALIAS_REFERENCE 0.00 0.00 0.00 12.0
REFERENCE_ADDRESS 0.00 0.00 0.00 10.0
micro 0.00 0.00 0.00 32.0
macro 0.00 0.00 0.00 32.0
With entity type
type precision recall f1-score support
ALIAS_ADDRESS 0.00 0.00 0.00 7.0
LIABILITY_PRICE 0.00 0.00 0.00 3.0
ALIAS_REFERENCE 0.00 0.00 0.00 12.0
REFERENCE_ADDRESS 0.00 0.00 0.00 10.0
micro 0.00 0.00 0.00 32.0
macro 0.00 0.00 0.00 32.0
Epoch 5: 100% 290/290 [06:17<00:00, 1.30s/it, loss=0.117, v_num=0_0]
Epoch 6: 90% 260/290 [06:07<00:42, 1.41s/it, loss=0.1, v_num=0_0]
Validating: 0it [00:00, ?it/s]
Validating: 0% 0/30 [00:00<?, ?it/s]
Epoch 6: 100% 290/290 [06:16<00:00, 1.30s/it, loss=0.1, v_num=0_0]
Validating: 100% 30/30 [00:12<00:00, 2.47it/s]Evaluation
--- Entity Mentions ---
type precision recall f1-score support
Binary 0.00 0.00 0.00 111.0
micro 0.00 0.00 0.00 111.0
macro 0.00 0.00 0.00 111.0
--- Clusters (Coreference Resolution) ---
type precision recall f1-score support
Binary 0.00 0.00 0.00 111.0
micro 0.00 0.00 0.00 111.0
macro 0.00 0.00 0.00 111.0
--- Entities ---
type precision recall f1-score support
PRICE 0.00 0.00 0.00 3.0
ALIAS 0.00 0.00 0.00 40.0
LIABILITY 0.00 0.00 0.00 2.0
REFERENCE 0.00 0.00 0.00 34.0
ADDRESS 0.00 0.00 0.00 32.0
micro 0.00 0.00 0.00 111.0
macro 0.00 0.00 0.00 111.0
--- Relations ---
Without entity type
type precision recall f1-score support
ALIAS_ADDRESS 0.00 0.00 0.00 7.0
LIABILITY_PRICE 0.00 0.00 0.00 3.0
ALIAS_REFERENCE 0.00 0.00 0.00 12.0
REFERENCE_ADDRESS 0.00 0.00 0.00 10.0
micro 0.00 0.00 0.00 32.0
macro 0.00 0.00 0.00 32.0
With entity type
type precision recall f1-score support
ALIAS_ADDRESS 0.00 0.00 0.00 7.0
LIABILITY_PRICE 0.00 0.00 0.00 3.0
ALIAS_REFERENCE 0.00 0.00 0.00 12.0
REFERENCE_ADDRESS 0.00 0.00 0.00 10.0
micro 0.00 0.00 0.00 32.0
macro 0.00 0.00 0.00 32.0
Epoch 6: 100% 290/290 [06:20<00:00, 1.31s/it, loss=0.1, v_num=0_0]
Epoch 7: 90% 260/290 [06:04<00:42, 1.40s/it, loss=0.153, v_num=0_0]
Validating: 0it [00:00, ?it/s]
Validating: 0% 0/30 [00:00<?, ?it/s]
Epoch 7: 100% 290/290 [06:12<00:00, 1.29s/it, loss=0.153, v_num=0_0]
Validating: 100% 30/30 [00:12<00:00, 2.49it/s]Evaluation
--- Entity Mentions ---
type precision recall f1-score support
Binary 0.00 0.00 0.00 111.0
micro 0.00 0.00 0.00 111.0
macro 0.00 0.00 0.00 111.0
--- Clusters (Coreference Resolution) ---
type precision recall f1-score support
Binary 0.00 0.00 0.00 111.0
micro 0.00 0.00 0.00 111.0
macro 0.00 0.00 0.00 111.0
--- Entities ---
type precision recall f1-score support
PRICE 0.00 0.00 0.00 3.0
ALIAS 0.00 0.00 0.00 40.0
LIABILITY 0.00 0.00 0.00 2.0
REFERENCE 0.00 0.00 0.00 34.0
ADDRESS 0.00 0.00 0.00 32.0
micro 0.00 0.00 0.00 111.0
macro 0.00 0.00 0.00 111.0
--- Relations ---
Without entity type
type precision recall f1-score support
ALIAS_ADDRESS 0.00 0.00 0.00 7.0
LIABILITY_PRICE 0.00 0.00 0.00 3.0
ALIAS_REFERENCE 0.00 0.00 0.00 12.0
REFERENCE_ADDRESS 0.00 0.00 0.00 10.0
micro 0.00 0.00 0.00 32.0
macro 0.00 0.00 0.00 32.0
With entity type
type precision recall f1-score support
ALIAS_ADDRESS 0.00 0.00 0.00 7.0
LIABILITY_PRICE 0.00 0.00 0.00 3.0
ALIAS_REFERENCE 0.00 0.00 0.00 12.0
REFERENCE_ADDRESS 0.00 0.00 0.00 10.0
micro 0.00 0.00 0.00 32.0
macro 0.00 0.00 0.00 32.0
Epoch 7: 100% 290/290 [06:16<00:00, 1.30s/it, loss=0.153, v_num=0_0]
Epoch 8: 90% 260/290 [06:11<00:42, 1.43s/it, loss=0.0601, v_num=0_0]
Validating: 0it [00:00, ?it/s]
Validating: 0% 0/30 [00:00<?, ?it/s]
Epoch 8: 100% 290/290 [06:20<00:00, 1.31s/it, loss=0.0601, v_num=0_0]
Validating: 100% 30/30 [00:13<00:00, 2.27it/s]Evaluation
--- Entity Mentions ---
type precision recall f1-score support
Binary 0.00 0.00 0.00 111.0
micro 0.00 0.00 0.00 111.0
macro 0.00 0.00 0.00 111.0
--- Clusters (Coreference Resolution) ---
type precision recall f1-score support
Binary 0.00 0.00 0.00 111.0
micro 0.00 0.00 0.00 111.0
macro 0.00 0.00 0.00 111.0
--- Entities ---
type precision recall f1-score support
PRICE 0.00 0.00 0.00 3.0
ALIAS 0.00 0.00 0.00 40.0
LIABILITY 0.00 0.00 0.00 2.0
REFERENCE 0.00 0.00 0.00 34.0
ADDRESS 0.00 0.00 0.00 32.0
micro 0.00 0.00 0.00 111.0
macro 0.00 0.00 0.00 111.0
--- Relations ---
Without entity type
type precision recall f1-score support
ALIAS_ADDRESS 0.00 0.00 0.00 7.0
LIABILITY_PRICE 0.00 0.00 0.00 3.0
ALIAS_REFERENCE 0.00 0.00 0.00 12.0
REFERENCE_ADDRESS 0.00 0.00 0.00 10.0
micro 0.00 0.00 0.00 32.0
macro 0.00 0.00 0.00 32.0
With entity type
type precision recall f1-score support
ALIAS_ADDRESS 0.00 0.00 0.00 7.0
LIABILITY_PRICE 0.00 0.00 0.00 3.0
ALIAS_REFERENCE 0.00 0.00 0.00 12.0
REFERENCE_ADDRESS 0.00 0.00 0.00 10.0
micro 0.00 0.00 0.00 32.0
macro 0.00 0.00 0.00 32.0
Epoch 8: 100% 290/290 [06:25<00:00, 1.33s/it, loss=0.0601, v_num=0_0]
Epoch 9: 90% 260/290 [06:21<00:44, 1.47s/it, loss=0.0318, v_num=0_0]
Validating: 0it [00:00, ?it/s]
Validating: 0% 0/30 [00:00<?, ?it/s]
Epoch 9: 100% 290/290 [06:30<00:00, 1.35s/it, loss=0.0318, v_num=0_0]
Validating: 100% 30/30 [00:13<00:00, 2.25it/s]Evaluation
--- Entity Mentions ---
type precision recall f1-score support
Binary 0.00 0.00 0.00 111.0
micro 0.00 0.00 0.00 111.0
macro 0.00 0.00 0.00 111.0
--- Clusters (Coreference Resolution) ---
type precision recall f1-score support
Binary 0.00 0.00 0.00 111.0
micro 0.00 0.00 0.00 111.0
macro 0.00 0.00 0.00 111.0
--- Entities ---
type precision recall f1-score support
PRICE 0.00 0.00 0.00 3.0
ALIAS 0.00 0.00 0.00 40.0
LIABILITY 0.00 0.00 0.00 2.0
REFERENCE 0.00 0.00 0.00 34.0
ADDRESS 0.00 0.00 0.00 32.0
micro 0.00 0.00 0.00 111.0
macro 0.00 0.00 0.00 111.0
--- Relations ---
Without entity type
type precision recall f1-score support
ALIAS_ADDRESS 0.00 0.00 0.00 7.0
LIABILITY_PRICE 0.00 0.00 0.00 3.0
ALIAS_REFERENCE 0.00 0.00 0.00 12.0
REFERENCE_ADDRESS 0.00 0.00 0.00 10.0
micro 0.00 0.00 0.00 32.0
macro 0.00 0.00 0.00 32.0
With entity type
type precision recall f1-score support
ALIAS_ADDRESS 0.00 0.00 0.00 7.0
LIABILITY_PRICE 0.00 0.00 0.00 3.0
ALIAS_REFERENCE 0.00 0.00 0.00 12.0
REFERENCE_ADDRESS 0.00 0.00 0.00 10.0
micro 0.00 0.00 0.00 32.0
macro 0.00 0.00 0.00 32.0
Epoch 9: 100% 290/290 [06:35<00:00, 1.36s/it, loss=0.0318, v_num=0_0]
Epoch 10: 90% 260/290 [06:23<00:44, 1.47s/it, loss=0.0143, v_num=0_0]
Validating: 0it [00:00, ?it/s]
Validating: 0% 0/30 [00:00<?, ?it/s]
Epoch 10: 100% 290/290 [06:33<00:00, 1.36s/it, loss=0.0143, v_num=0_0]
Validating: 100% 30/30 [00:14<00:00, 2.15it/s]Evaluation
--- Entity Mentions ---
type precision recall f1-score support
Binary 0.00 0.00 0.00 111.0
micro 0.00 0.00 0.00 111.0
macro 0.00 0.00 0.00 111.0
--- Clusters (Coreference Resolution) ---
type precision recall f1-score support
Binary 0.00 0.00 0.00 111.0
micro 0.00 0.00 0.00 111.0
macro 0.00 0.00 0.00 111.0
--- Entities ---
type precision recall f1-score support
PRICE 0.00 0.00 0.00 3.0
ALIAS 0.00 0.00 0.00 40.0
LIABILITY 0.00 0.00 0.00 2.0
REFERENCE 0.00 0.00 0.00 34.0
ADDRESS 0.00 0.00 0.00 32.0
micro 0.00 0.00 0.00 111.0
macro 0.00 0.00 0.00 111.0
--- Relations ---
Without entity type
type precision recall f1-score support
ALIAS_ADDRESS 0.00 0.00 0.00 7.0
LIABILITY_PRICE 0.00 0.00 0.00 3.0
ALIAS_REFERENCE 0.00 0.00 0.00 12.0
REFERENCE_ADDRESS 0.00 0.00 0.00 10.0
micro 0.00 0.00 0.00 32.0
macro 0.00 0.00 0.00 32.0
With entity type
type precision recall f1-score support
ALIAS_ADDRESS 0.00 0.00 0.00 7.0
LIABILITY_PRICE 0.00 0.00 0.00 3.0
ALIAS_REFERENCE 0.00 0.00 0.00 12.0
REFERENCE_ADDRESS 0.00 0.00 0.00 10.0
micro 0.00 0.00 0.00 32.0
macro 0.00 0.00 0.00 32.0
Epoch 10: 100% 290/290 [06:37<00:00, 1.37s/it, loss=0.0143, v_num=0_0]
Epoch 11: 90% 260/290 [06:21<00:44, 1.47s/it, loss=0.0324, v_num=0_0]
Validating: 0it [00:00, ?it/s]
Epoch 11: 97% 280/290 [06:24<00:13, 1.37s/it, loss=0.0324, v_num=0_0]
Traceback (most recent call last):
File "./jerex_train.py", line 20, in train
model.train(cfg)
File "/content/jerex/jerex/model.py", line 341, in train
trainer.fit(model, datamodule=data_module)
File "/usr/local/lib/python3.7/dist-packages/pytorch_lightning/trainer/trainer.py", line 499, in fit
self.dispatch()
File "/usr/local/lib/python3.7/dist-packages/pytorch_lightning/trainer/trainer.py", line 546, in dispatch
self.accelerator.start_training(self)
File "/usr/local/lib/python3.7/dist-packages/pytorch_lightning/accelerators/accelerator.py", line 73, in start_training
self.training_type_plugin.start_training(trainer)
File "/usr/local/lib/python3.7/dist-packages/pytorch_lightning/plugins/training_type/training_type_plugin.py", line 114, in start_training
self._results = trainer.run_train()
File "/usr/local/lib/python3.7/dist-packages/pytorch_lightning/trainer/trainer.py", line 637, in run_train
self.train_loop.run_training_epoch()
File "/usr/local/lib/python3.7/dist-packages/pytorch_lightning/trainer/training_loop.py", line 577, in run_training_epoch
self.trainer.run_evaluation(on_epoch=True)
File "/usr/local/lib/python3.7/dist-packages/pytorch_lightning/trainer/trainer.py", line 725, in run_evaluation
output = self.evaluation_loop.evaluation_step(batch, batch_idx, dataloader_idx)
File "/usr/local/lib/python3.7/dist-packages/pytorch_lightning/trainer/evaluation_loop.py", line 166, in evaluation_step
output = self.trainer.accelerator.validation_step(args)
File "/usr/local/lib/python3.7/dist-packages/pytorch_lightning/accelerators/accelerator.py", line 177, in validation_step
return self.training_type_plugin.validation_step(*args)
File "/usr/local/lib/python3.7/dist-packages/pytorch_lightning/plugins/training_type/training_type_plugin.py", line 131, in validation_step
return self.lightning_module.validation_step(*args, **kwargs)
File "/content/jerex/jerex/model.py", line 126, in validation_step
return self._inference(batch, batch_idx)
File "/content/jerex/jerex/model.py", line 176, in _inference
output = self(**batch, inference=True)
File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py", line 1051, in _call_impl
return forward_call(*input, **kwargs)
File "/content/jerex/jerex/model.py", line 106, in forward
max_rel_pairs=max_rel_pairs, inference=inference)
File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py", line 1051, in _call_impl
return forward_call(*input, **kwargs)
File "/content/jerex/jerex/models/joint_models.py", line 144, in forward
return self._forward_inference(*args, **kwargs)
File "/content/jerex/jerex/models/joint_models.py", line 209, in _forward_inference
mention_sample_masks, max_spans=max_spans, max_coref_pairs=max_coref_pairs)
File "/content/jerex/jerex/models/joint_models.py", line 100, in _forward_inference_common
valid_mentions, self._coref_threshold)
File "/content/jerex/jerex/models/misc.py", line 135, in create_clusters
assignments = agg_clustering.fit_predict(distances)
File "/usr/local/lib/python3.7/dist-packages/sklearn/cluster/_agglomerative.py", line 902, in fit_predict
return super().fit_predict(X, y)
File "/usr/local/lib/python3.7/dist-packages/sklearn/base.py", line 462, in fit_predict
self.fit(X)
File "/usr/local/lib/python3.7/dist-packages/sklearn/cluster/_agglomerative.py", line 796, in fit
X = check_array(X, ensure_min_samples=2, estimator=self)
File "/usr/local/lib/python3.7/dist-packages/sklearn/utils/validation.py", line 586, in check_array
context))
ValueError: Found array with 1 sample(s) (shape=(1, 1)) while a minimum of 2 is required by AgglomerativeClustering.
Set the environment variable HYDRA_FULL_ERROR=1 for a complete stack trace.