Implementing yolov4 target detection and tracking based on nao robot

Overview

基于nao机器人实现yolov4目标检测并进行跟踪

Introduction - 介绍

本项目为yolov4算法在nao机器人上的应用。

关于YOLOv4原理请参考YOLOv4原论文
本项目主要YOLOv4框架参考Bubbliiiing博主复现的代码
原博客链接:https://blog.csdn.net/weixin_44791964/article/details/106214657
复现代码链接:https://github.com/bubbliiiing/yolov4-pytorch
nao机器人单目测距方法请参考:https://wenku.baidu.com/view/bdc7eea7482fb4daa48d4b24.html
使用本项目前请先下载复现YOLOv4代码,并用py3.6文件夹中.py文件替换原文件中的同名文件


下图为目标跟踪流程图。由于nao机器人sdk库naoqi仅支持py2.7环境,本项目需分别运行py2.7环境下的"封装跟踪.py"文件和py3.6环境下的"predict.py"文件。
该项目可以让nao机器人转头寻找水瓶目标,检测到目标后通过单目测距向目标前进,当目标距离和nao小于1.09m时,程序完成运行。 image

Requirements - 必要条件

py2.7环境

numpy==1.16.6+vanilla
opencv-python==2.4.13.7
Pillow==6.2.2
pynaoqi==2.1.4.13

tips

naoqi库为软银官方提供的nao机器人sdk
naoqi库百度云链接:链接: https://pan.baidu.com/s/1kib-Bx9BjiOXCjrIycsIAw 提取码: 5k8b


py3.6环境

pytorch和cuda版本参考Bubbliiiing博文,其他缺少环境任意版本即可。 参考环境见py3.6环境文件(仅供参考,因为包含了很多自用无关的库)

Configuration - 配置

使用本项目前请先下载复现YOLOv4代码,并用py3.6文件夹中.py文件替换原文件中的同名文件
YOLOv4环境的配置方法:
1.将训练好的只检测水瓶类的权重文件放入model_data文件夹,并替换yolo.py中的初始路径
2.把model_data文件夹下的voc_classes.txt文件中物品类别改为只有bottle
3.更多问题详见Bubbliiiing博文。

本项目跟踪的只有水瓶类,所以训练时只提取了VOC2007数据集中的水瓶类别
只有水瓶类别的VOC2007数据集百度云链接:链接: https://pan.baidu.com/s/1d11f3lm2BvPtwxXuRYZ5HQ 提取码: w2kn
训练好的只检测水瓶类的权重百度云链接: 链接: https://pan.baidu.com/s/1Qt__j8RAOZeRbY8BjXitpA 提取码: 5u2b

Usage - 用法

配置好py3.6和py2.7环境后。先运行"封装跟踪.py"文件,再运行"predict.py"文件。
检测到的图片信息可见于img文件夹

Changelog - 更新日志

License - 版权信息

本项目证书为GPL-3.0 License,详见GPL-3.0 License.md

You might also like...
YOLTv4 builds upon YOLT and SIMRDWN, and updates these frameworks to use the most performant version of YOLO, YOLOv4
YOLTv4 builds upon YOLT and SIMRDWN, and updates these frameworks to use the most performant version of YOLO, YOLOv4

YOLTv4 builds upon YOLT and SIMRDWN, and updates these frameworks to use the most performant version of YOLO, YOLOv4. YOLTv4 is designed to detect objects in aerial or satellite imagery in arbitrarily large images that far exceed the ~600×600 pixel size typically ingested by deep learning object detection frameworks.

PyTorch ,ONNX and TensorRT implementation of YOLOv4
PyTorch ,ONNX and TensorRT implementation of YOLOv4

PyTorch ,ONNX and TensorRT implementation of YOLOv4

I tried to apply the CAM algorithm to YOLOv4 and it worked.
I tried to apply the CAM algorithm to YOLOv4 and it worked.

YOLOV4:You Only Look Once目标检测模型在pytorch当中的实现 2021年2月7日更新: 加入letterbox_image的选项,关闭letterbox_image后网络的map得到大幅度提升。 目录 性能情况 Performance 实现的内容 Achievement

这是一个mobilenet-yolov4-lite的库,把yolov4主干网络修改成了mobilenet,修改了Panet的卷积组成,使参数量大幅度缩小。

YOLOV4:You Only Look Once目标检测模型-修改mobilenet系列主干网络-在Keras当中的实现 2021年2月8日更新: 加入letterbox_image的选项,关闭letterbox_image后网络的map一般可以得到提升。

Vehicles Counting using YOLOv4 + DeepSORT + Flask + Ngrok
Vehicles Counting using YOLOv4 + DeepSORT + Flask + Ngrok

A project for counting vehicles using YOLOv4 + DeepSORT + Flask + Ngrok

Implementation of "Scaled-YOLOv4: Scaling Cross Stage Partial Network" using PyTorch framwork.

YOLOv4-large This is the implementation of "Scaled-YOLOv4: Scaling Cross Stage Partial Network" using PyTorch framwork. YOLOv4-CSP YOLOv4-tiny YOLOv4-

A tutorial on training a DarkNet YOLOv4 model for the CrowdHuman dataset
A tutorial on training a DarkNet YOLOv4 model for the CrowdHuman dataset

YOLOv4 CrowdHuman Tutorial This is a tutorial demonstrating how to train a YOLOv4 people detector using Darknet and the CrowdHuman dataset. Table of c

 YOLOv4-v3 Training Automation API for Linux
YOLOv4-v3 Training Automation API for Linux

This repository allows you to get started with training a state-of-the-art Deep Learning model with little to no configuration needed! You provide your labeled dataset or label your dataset using our BMW-LabelTool-Lite and you can start the training right away and monitor it in many different ways like TensorBoard or a custom REST API and GUI. NoCode training with YOLOv4 and YOLOV3 has never been so easy.

A Keras implementation of YOLOv4 (Tensorflow backend)
A Keras implementation of YOLOv4 (Tensorflow backend)

keras-yolo4 请使用更完善的版本: https://github.com/miemie2013/Keras-YOLOv4 Please visit here for more complete model: https://github.com/miemie2013/Keras-YOLOv

Owner
null
YOLOv4 / Scaled-YOLOv4 / YOLO - Neural Networks for Object Detection (Windows and Linux version of Darknet )

Yolo v4, v3 and v2 for Windows and Linux (neural networks for object detection) Paper YOLO v4: https://arxiv.org/abs/2004.10934 Paper Scaled YOLO v4:

Alexey 20.2k Jan 9, 2023
WHENet - ONNX, OpenVINO, TFLite, TensorRT, EdgeTPU, CoreML, TFJS, YOLOv4/YOLOv4-tiny-3L

HeadPoseEstimation-WHENet-yolov4-onnx-openvino ONNX, OpenVINO, TFLite, TensorRT, EdgeTPU, CoreML, TFJS, YOLOv4/YOLOv4-tiny-3L 1. Usage $ git clone htt

Katsuya Hyodo 49 Sep 21, 2022
Space robot - (Course Project) Using the space robot to capture the target satellite that is disabled and spinning, then stabilize and fix it up

Space robot - (Course Project) Using the space robot to capture the target satellite that is disabled and spinning, then stabilize and fix it up

Mingrui Yu 3 Jan 7, 2022
People movement type classifier with YOLOv4 detection and SORT tracking.

Movement classification The goal of this project would be movement classification of people, in other words, walking (normal and fast) and running. Yo

null 4 Sep 21, 2021
Object tracking implemented with YOLOv4, DeepSort, and TensorFlow.

Object tracking implemented with YOLOv4, DeepSort, and TensorFlow. YOLOv4 is a state of the art algorithm that uses deep convolutional neural networks to perform object detections. We can take the output of YOLOv4 feed these object detections into Deep SORT (Simple Online and Realtime Tracking with a Deep Association Metric) in order to create a highly accurate object tracker.

The AI Guy 1.1k Dec 29, 2022
MohammadReza Sharifi 27 Dec 13, 2022
Joint detection and tracking model named DEFT, or ``Detection Embeddings for Tracking.

DEFT: Detection Embeddings for Tracking DEFT: Detection Embeddings for Tracking, Mohamed Chaabane, Peter Zhang, J. Ross Beveridge, Stephen O'Hara

Mohamed Chaabane 253 Dec 18, 2022
Guiding evolutionary strategies by (inaccurate) differentiable robot simulators @ NeurIPS, 4th Robot Learning Workshop

Guiding Evolutionary Strategies by Differentiable Robot Simulators In recent years, Evolutionary Strategies were actively explored in robotic tasks fo

Vladislav Kurenkov 4 Dec 14, 2021
Python and C++ implementation of "MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation". Accepted at LXCV @ CVPR 2021.

MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation This is a PyTorch and LibTorch implementation of MarkerPose: a

Jhacson Meza 47 Nov 18, 2022
Based on Yolo's low-power, ultra-lightweight universal target detection algorithm, the parameter is only 250k, and the speed of the smart phone mobile terminal can reach ~300fps+

Based on Yolo's low-power, ultra-lightweight universal target detection algorithm, the parameter is only 250k, and the speed of the smart phone mobile terminal can reach ~300fps+

null 567 Dec 26, 2022