mini-AlphaStar
Introduction
The mini-AlphaStar (mini-AS, or mAS) project is a mini-scale version (non-official) of the AlphaStar (AS). AlphaStar is the intelligent AI proposed by DeepMind to play StarCraft II.
The "mini-scale" means making the original AS's hyper-parameters adjustable so that mini-AS can be trained and running on a small scale. E.g., we can train this model in a single commercial server machine.
We referred to the "Occam's Razor Principle" when designing the mini-AS": simple is sound. Therefore, we build mini-AS from scratch. Unless the function significantly impacts speed and performance, we shall omit it.
Meanwhile, we also try not to use too many dependency packages so that mini-AS should only depend on the PyTorch. In this way, we simplify the learning cost of the mini-AS and make the architecture of mini-AS relatively easy.
The Chinese shows a simple readme in Chinese.
Below 4 GIFs are mini-AS' trained performance on Simple64, supervised learning on 50 expert replays.
Left: At the start of the game. Right: In the middle period of the game.
Left: The agent's 1st attack. Right: The agent's 2nd Attack.
Update
This release is the "v_1.07" version. In this version, we give an agent which grows from 0.016 to 0.5667 win rate against the level-2 built-in bot training by reinforcement learning. Other improvements are shown below:
- Use mimic_forward to replace forward in "rl_unroll", which increase the training accuracy;
- Make RL training supports multi-GPU now;
- Make RL training supports multi-process training based on multi-GPU now;
- Use new architecture for RL loss, which reduces 86% GPU memory;
- Use new architecture for RL to increase the sampling speed by 6x faster;
- Validate UPGO and V-trace loss again;
- By a "multi-process plus multi-thread" training, increase the sampling speed more by 197%;
- Fix the GPU memory leak and reduce the CPU memory leak;
- Increase the RL training win rate (without units loss) on level-2 to 0.57!
Hints
Warning: SC2 is extremely difficult, and AlphaStar is also very complex. Even our project is a mini-AlphaStar, it has almost the similar technologies as AS, and the training resource also costs very high. We can hardly train mini-AS on a laptop. The recommended way is to use a commercial server with a GPU card and enough large memory and disk space. For someone interested in this project for the first time, we recommend you collect (star) this project and devolve deeply into researching it when you have enough free time and training resources.
Location
We store the codes and show videos in two places.
Codes location | Result video location | Usage |
---|---|---|
Github | Youtube | for global users |
Gitee | Bilibili | for users in China |
Contents
The table below shows the corresponding packages in the project.
Packages | Content |
---|---|
alphastarmini.core.arch | deep neural architecture |
alphastarmini.core.sl | supervised learning |
alphastarmini.core.rl | reinforcement learning |
alphastarmini.core.ma | multi-agent league traning |
alphastarmini.lib | lib functions |
alphastarmini.third | third party functions |
Requirements
PyTorch >= 1.5, others please see requirements.txt.
Install
The SCRIPT Guide gives some commands to install PyTorch by conda (this will automatically install CUDA and cudnn, which is convenient).
E.g., like (to install PyTorch 1.5 with accompanied CUDA and cudnn):
conda create -n th_1_5 python=3.7 pytorch=1.5 -c pytorch
Next, activate the conda environment, like:
conda activate th_1_5
Then you can install other python packages by pip, e.g., the command in the below line:
pip install -r requirements.txt
Usage
After you have done all requirements, run the below python file to run the program:
python run.py
You may use comments and uncomments in "run.py" to select the training process you want.
The USAGE Guide provides answers to some problems and questions.
You should follow the following instructions to get results similar and/or better than the provided gifs on the main page.
The processing sequences can be summarised as the following:
- Transform replays: download the replays for training, then use the script in mAS to transform the replays to trainable data;
- Supervised learning: use the trainable data to supervise learning an initial model;
- Evaluate SL model: the trained SL model should be evaluated on the RL environment to make sure it behaves right;
- Reinforcement learning: use the trained SL model to do reinforcement learning in the SC environment, seeing the win rate starts growing.
We give detailed descriptions below.
Transofrm replays
In supervised learning, you first need to download SC2 replays.
The REPLAY Guide shows a guide to download these SC2 replays.
The ZHIHU Guide provides Chinese users who are not convenient to use Battle.net (outside China) a guide to download replays.
After downloading replays, you should move the replays to "./data/Replays/filtered_replays_1" (you can change the name in transform_replay_data.py
).
Then use transform_replay_data.py
to transform these replays to pickles or tensors (you can change the output type in the code of that file).
You don't need to run the transform_replay_data.py directly. Only run "run.py" is OK. Make the run.py has the following code
# from alphastarmini.core.sl import transform_replay_data
# transform_replay_data.test(on_server=P.on_server)
uncommented. Then you can directly run "run.py".
Note: To get the effect of the trained agent in the gifs, use the replays in Useful-Big-Resources. These replays are generatedy by our experts, to get an agent having the ability to win the built-in bot.
Supervised learning
After getting the trainable data (we use tensor data). Make the run.py has the following code
# from alphastarmini.core.sl import sl_train_by_tensor
# sl_train_by_tensor.test(on_server=P.on_server)
uncommented. Then you can directly run "run.py" to do supervised learning.
The default learning rate is 1e-4, and the training epochs should best be 10 (more epochs may cause the training effect overfitting).
From the v_1.05 version, we start to support multi-GPU supervised learning training for mini-AS, improving the training speed. The way to use multi-GPU training is straightforward, as follows:
python run_multi-gpu.py
Multi-GPU training has some unstable factors (caused because of PyTorch). If you find your multi-GPU training has training instability errors, please switch to the single-GPU training.
We currently support four types of supervised training, which all reside in the "alphastarmini.core.sl" package.
File | Content |
---|---|
sl_train_by_pickle.py |
pickle (data not preprocessed) training: Slow, but need small disk space. |
sl_train_by_tensor.py |
tensor (data preprocessed) training: Fast, but cost colossal disk space. |
sl_multi_gpu_by_pickle.py |
multi-GPU, pickle training: It has a requirement need for large shared memory. |
sl_multi_gpu_by_tensor.py |
multi-GPU, tensor training: It needs both large memory and large shared memory. |
You can use the load_pickle.py
to transform the generated pickles (in "./data/replay_data") to tensors (in "./data/replay_data_tensor").
Note: from v_1.06, we still recommend using single-GPU training. We provide the new training ways in the single-GPU type. This is due to multi-GPU training cost so much memory.
Evaluate SL model
After getting the supervised learning model. We should test the performance of the model in the SC2 environment this is due to there is domain shift from SL data and RL environment.
Make the run.py has the following code
# from alphastarmini.core.rl import rl_eval_sl
# rl_eval_sl.test(on_server=P.on_server)
uncommented. Then you can directly run "run.py" to do an evaluation of the SL model.
The evaluation is similar to RL training but the learning is closed and the running is single-thread and single-process, to make the randomness due to multi-thread not affect the evaluation.
Reinforcement learning
After making sure the supervised learning model is OK and suitable for RL training. We do RL training based on the learned supervised learning model.
Make the run.py has the following code
# from alphastarmini.core.rl import rl_vs_inner_bot_mp
# rl_vs_inner_bot_mp.test(on_server=P.on_server, replay_path=P.replay_path)
uncommented. Then you can directly run "run.py" to do reinforcement learning.
Note, this training will use a multi-process plus multi-thread RL training (to accelerate the learning speed), so make sure to run this codes on a high-performance computer.
E.g., we run 15 processes, and each process has 2 actor threads and 1 learner thread in a commercial server. If your computer is not strong as that, reduce the parallel and thread nums.
The learning rate should be very small (below 1e-5, because you are training on an initially trained model), and the training iterations should be as long as best (more training iterations can reduce the unstable of RL training).
If you find the training is not as like as you imagine, please open an issue to ask us or discuss with us (though we can not make sure to respond to it in time or there is a solution to every problem).
Results
Here are some illustration figures of the SL training process below:
We can see the loss (one primary loss and six argument losses) fall quickly.
The trained behavior of the agents can be seen in the gifs on this page.
A more detailed illustration of the experiments (such as the effects of the different hyper-parameters) will be provided in our later paper.
History
The HISTORY is the historical introduction of the previous versions of mini-AS.
Citing
If you find our repository useful, please cite our project or the below technical report:
@misc{liu2021mAS,
author = {Ruo{-}Ze Liu and Wenhai Wang and Yang Yu and Tong Lu},
title = {mini-AlphaStar},
year = {2021},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/liuruoze/mini-AlphaStar}},
}
The An Introduction of mini-AlphaStar is a technical report introducing the mini-AS (not full version).
@article{liu2021mASreport,
author = {Ruo{-}Ze Liu and
Wenhai Wang and
Yanjie Shen and
Zhiqi Li and
Yang Yu and
Tong Lu},
title = {An Introduction of mini-AlphaStar},
journal = {CoRR},
volume = {abs/2104.06890},
year = {2021},
}
Rethinking
The Rethinking of AlphaStar is our thinking of the advantages and disadvantages of AlphaStar.
Paper
We will give a paper (which is now under peer-review) that may be available in the future, presenting detailed experiments and evaluations using the mini-AS.