Adversarial Learning for Modeling Human Motion

Overview

Adversarial Learning for Modeling Human Motion

This repository contains the open source code which reproduces the results for the paper: Adversarial learning for modeling human motion. The authors of this paper are: Qi Wang, Thierry Artières, Mickael Chen, and Ludovic Denoyer.

How to Reproduce the Results

  1. For download the EMILYA dataset, you should contact the owner Catherine Pelachaud.

  2. Clone this repository code to your computer and rename the root folder as "Seq_AAE_V1" .

  3. Install the relevant packages

    • Keras
    • matlotlib
  4. Data Preprocessing: You should save the motions in EmilyaDataset into a npz file according to the readme.md file in the folder 'datasets/EmilyaDaset/'.

  5. For training the models in the paper, you should navigate to the "\Training" directory under the root directory of the project and there you can find the following five folders:

Conditional_SAAE

Seq_AAE

Double_GAN_Continuous_Emotion_Representation

Seq_VAE

Double_Gan_Condition_SAAE

These folders are named by the model's name. Enter each of the folders, you can find the training file and evaluation scripts in a subfolder named '\evaluation'. By running the training file in terminal, you can train the model from scratch. If you want to tune the hyperparameters, you can directly modified them in the training file.

You might also like...
(ICCV 2021) ProHMR - Probabilistic Modeling for Human Mesh Recovery
(ICCV 2021) ProHMR - Probabilistic Modeling for Human Mesh Recovery

ProHMR - Probabilistic Modeling for Human Mesh Recovery Code repository for the paper: Probabilistic Modeling for Human Mesh Recovery Nikos Kolotouros

[CVPR2021] UAV-Human: A Large Benchmark for Human Behavior Understanding with Unmanned Aerial Vehicles

UAV-Human Official repository for CVPR2021: UAV-Human: A Large Benchmark for Human Behavior Understanding with Unmanned Aerial Vehicle Paper arXiv Res

 Human POSEitioning System (HPS): 3D Human Pose Estimation and Self-localization in Large Scenes from Body-Mounted Sensors, CVPR 2021
Human POSEitioning System (HPS): 3D Human Pose Estimation and Self-localization in Large Scenes from Body-Mounted Sensors, CVPR 2021

Human POSEitioning System (HPS): 3D Human Pose Estimation and Self-localization in Large Scenes from Body-Mounted Sensors Human POSEitioning System (H

Human Action Controller - A human action controller running on different platforms.
Human Action Controller - A human action controller running on different platforms.

Human Action Controller (HAC) Goal A human action controller running on different platforms. Fun Easy-to-use Accurate Anywhere Fun Examples Mouse Cont

Python scripts for performing 3D human pose estimation using the Mobile Human Pose model in ONNX.
Python scripts for performing 3D human pose estimation using the Mobile Human Pose model in ONNX.

Python scripts for performing 3D human pose estimation using the Mobile Human Pose model in ONNX.

StyleGAN-Human: A Data-Centric Odyssey of Human Generation
StyleGAN-Human: A Data-Centric Odyssey of Human Generation

StyleGAN-Human: A Data-Centric Odyssey of Human Generation Abstract: Unconditional human image generation is an important task in vision and graphics,

Flickr-Faces-HQ (FFHQ) is a high-quality image dataset of human faces, originally created as a benchmark for generative adversarial networks (GAN)
Flickr-Faces-HQ (FFHQ) is a high-quality image dataset of human faces, originally created as a benchmark for generative adversarial networks (GAN)

Flickr-Faces-HQ Dataset (FFHQ) Flickr-Faces-HQ (FFHQ) is a high-quality image dataset of human faces, originally created as a benchmark for generative

Code for the paper: Adversarial Training Against Location-Optimized Adversarial Patches. ECCV-W 2020.

Adversarial Training Against Location-Optimized Adversarial Patches arXiv | Paper | Code | Video | Slides Code for the paper: Sukrut Rao, David Stutz,

Adversarial Color Enhancement: Generating Unrestricted Adversarial Images by Optimizing a Color Filter

ACE Please find the preliminary version published at BMVC 2020 in the folder BMVC_version, and its extended journal version in Journal_version. Datase

Comments
  • Missing folder:

    Missing folder: "synthesis_scripts"

    Hi Qi Wang,

    There appears to be a missing folder /synthesis_scripts at the root folder: [Motion_Synthesis_Advserarial_Learning](https://github.com/lucaskingjade/Motion_Synthesis_Adversarial_Learning), which is referenced by the code by its alias: Seq_AAE_V1.

    Several piece of code depend on this folder such as [dataset.py](https://github.com/lucaskingjade/Motion_Synthesis_Adversarial_Learning/blob/master/datasets/dataset.py) and [seq_aae_new_loss.py](https://github.com/lucaskingjade/Motion_Synthesis_Adversarial_Learning/blob/master/models/Seq_AAE/seq_aae_new_loss.py) in their imports such as:

    • from Seq_AAE_V1.synthesis_scripts.synthesis_utils import denormalize,denormalize_vertical_position

    • from Seq_AAE_V1.synthesis_scripts.synthesis_utils import save_seq_2_bvh

    Could you please upload this missing folder?

    Many thanks, Anthony

    opened by INASIC 2
  • Missing Conditional SAAE model

    Missing Conditional SAAE model

    Hey Qi Wang,

    First of all, thanks for this interesting project! I just noticed, that the folder for the Conditional SAAE model seems to be missing. Could you add the missing files, as this is the model I am most interested in?

    Thank you in advance!

    opened by 16stelter 0
Owner
wangqi
Learn to teach machines to learn!
wangqi
This repository contains the code for the paper "Hierarchical Motion Understanding via Motion Programs"

Hierarchical Motion Understanding via Motion Programs (CVPR 2021) This repository contains the official implementation of: Hierarchical Motion Underst

Sumith Kulal 40 Dec 5, 2022
Implementation based on Paper - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

Implementation based on Paper - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

HamasKhan 3 Jul 8, 2022
PaddleRobotics is an open-source algorithm library for robots based on Paddle, including open-source parts such as human-robot interaction, complex motion control, environment perception, SLAM positioning, and navigation.

简体中文 | English PaddleRobotics paddleRobotics是基于paddle的机器人开源算法库集,包括人机交互、复杂运动控制、环境感知、slam定位导航等开源算法部分。 人机交互 主动多模交互技术TFVT-HRI 主动多模交互技术是通过视觉、语音、触摸传感器等输入机器人

null 185 Dec 26, 2022
EasyMocap is an open-source toolbox for markerless human motion capture from RGB videos.

EasyMocap is an open-source toolbox for markerless human motion capture from RGB videos. In this project, we provide the basic code for fitt

ZJU3DV 2.2k Jan 5, 2023
Synthesizing Long-Term 3D Human Motion and Interaction in 3D in CVPR2021

Long-term-Motion-in-3D-Scenes This is an implementation of the CVPR'21 paper "Synthesizing Long-Term 3D Human Motion and Interaction in 3D". Please ch

Jiashun Wang 76 Dec 13, 2022
[WACV 2020] Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints

Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints Official implementation for Reducing Footskate in Human Motion Recon

Virginia Tech Vision and Learning Lab 38 Nov 1, 2022
Code for ICCV 2021 paper "HuMoR: 3D Human Motion Model for Robust Pose Estimation"

Code for ICCV 2021 paper "HuMoR: 3D Human Motion Model for Robust Pose Estimation"

Davis Rempe 367 Dec 24, 2022
Official Pytorch implementation of the paper "Action-Conditioned 3D Human Motion Synthesis with Transformer VAE", ICCV 2021

ACTOR Official Pytorch implementation of the paper "Action-Conditioned 3D Human Motion Synthesis with Transformer VAE", ICCV 2021. Please visit our we

Mathis Petrovich 248 Dec 23, 2022
Official Pytorch implementation of the paper "MotionCLIP: Exposing Human Motion Generation to CLIP Space"

MotionCLIP Official Pytorch implementation of the paper "MotionCLIP: Exposing Human Motion Generation to CLIP Space". Please visit our webpage for mor

Guy Tevet 173 Dec 26, 2022
This repository is the offical Pytorch implementation of ContextPose: Context Modeling in 3D Human Pose Estimation: A Unified Perspective (CVPR 2021).

Context Modeling in 3D Human Pose Estimation: A Unified Perspective (CVPR 2021) Introduction This repository is the offical Pytorch implementation of

null 37 Nov 21, 2022