A Lucid Framework for Transparent and Interpretable Machine Learning Models.

Overview

https://raw.githubusercontent.com/lucidmode/lucidmode/main/images/lucidmode_logo.png



Documentation Status Version License Version Visits

Currently a Beta-Version


lucidmode is an open-source, low-code and lightweight Python framework for transparent and interpretable machine learning models. It has built in machine learning methods optimized for visual interpretation of some of the most relevant calculations.

Documentation

Installation

  • With package manager (coming soon)

Install by using pip package manager:

pip install lucidmode
  • Cloning repository

Clone entire github project

git@github.com:lucidmode/lucidmode.git

and then install dependencies

pip install -r requirements.txt

Models

Artificial Neural Network

Feedforward Multilayer perceptron with backpropagation.

  • fit: Fit model to data
  • predict: Prediction according to model

Initialization, Activations, Cost functions, regularization, optimization

  • Weights Initialization: With 4 types of criterias (zeros, xavier, common, he)
  • Activation Functions: sigmoid, tanh, ReLU
  • Cost Functions: Sum of Squared Error, Binary Cross-Entropy, Multi-Class Cross-Entropy
  • Regularization: L1, L2, ElasticNet for weights in cost function and in gradient updating
  • Optimization: Weights optimization with Gradient Descent (GD, SGD, Batch) with learning rate
  • Execution: Callback (metric threshold), History (Cost and metrics)
  • Hyperparameter Optimization: Random Grid Search with Memory

Complementary

  • Metrics: Accuracy, Confusion Matrix (Binary and Multiclass), Confusion Tensor (Multiclass OvR)
  • Visualizations: Cost evolution
  • Public Datasets: MNIST, Fashion MNIST
  • Special Datasets: OHLCV + Symbolic Features of Cryptocurrencies (ETH, BTC)

Important Links

Author/Principal Maintainer

Francisco Munnoz (IFFranciscoME) Is an associate professor of financial engineering and financial machine learning ITESO (Western Institute of Technology and Higher Education)

License

GNU General Public License v3.0

Permissions of this strong copyleft license are conditioned on making available complete source code of licensed works and modifications, which include larger works using a licensed work, under the same license. Copyright and license notices must be preserved. Contributors provide an express grant of patent rights.

Contact: For more information in reggards of this repo, please contact francisco.me@iteso.mx

You might also like...
Implementations of Machine Learning models, Regularizers, Optimizers and different Cost functions.

Linear Models Implementations of LinearRegression, LassoRegression and RidgeRegression with appropriate Regularizers and Optimizers. Linear Regression

Tangram makes it easy for programmers to train, deploy, and monitor machine learning models.
Tangram makes it easy for programmers to train, deploy, and monitor machine learning models.

Tangram Website | Discord Tangram makes it easy for programmers to train, deploy, and monitor machine learning models. Run tangram train to train a mo

SageMaker Python SDK is an open source library for training and deploying machine learning models on Amazon SageMaker.
SageMaker Python SDK is an open source library for training and deploying machine learning models on Amazon SageMaker.

SageMaker Python SDK SageMaker Python SDK is an open source library for training and deploying machine learning models on Amazon SageMaker. With the S

Model Validation Toolkit is a collection of tools to assist with validating machine learning models prior to deploying them to production and monitoring them after deployment to production.

Model Validation Toolkit is a collection of tools to assist with validating machine learning models prior to deploying them to production and monitoring them after deployment to production.

easyNeuron is a simple way to create powerful machine learning models, analyze  data and research cutting-edge AI.
easyNeuron is a simple way to create powerful machine learning models, analyze data and research cutting-edge AI.

easyNeuron is a simple way to create powerful machine learning models, analyze data and research cutting-edge AI.

A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.

Light Gradient Boosting Machine LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed a

Automated modeling and machine learning framework FEDOT
Automated modeling and machine learning framework FEDOT

This repository contains FEDOT - an open-source framework for automated modeling and machine learning (AutoML). It can build custom modeling pipelines for different real-world processes in an automated way using an evolutionary approach. FEDOT supports classification (binary and multiclass), regression, clustering, and time series prediction tasks.

machine learning model deployment project of Iris classification model in a minimal UI using flask web framework and deployed it in Azure cloud using Azure app service
machine learning model deployment project of Iris classification model in a minimal UI using flask web framework and deployed it in Azure cloud using Azure app service

This is a machine learning model deployment project of Iris classification model in a minimal UI using flask web framework and deployed it in Azure cloud using Azure app service. We initially made this project as a requirement for an internship at Indian Servers. We are now making it open to contribution.

QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.
QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

Releases(v0.4-beta1.0)
  • v0.4-beta1.0(Apr 29, 2021)

    Metrics

    • Calculation of several metrics for classification sensitivity (TPR), specificity (TNR), accuracy (acc), likelihood ratio (positive), likelihood ratio (negative), confusion matrix (binary and multiclass) confusion tensor (binary for every class in multi-class)

    Sequential Class

    • Move the cost_f and cost_r parameters to be specified from the formation method, leave the class instantiation with just the model architecture

    • Move the init_weights method to be specified from the formation method

    Execution

    • Create formation method in the Sequential Class, with the following parameters init, cost, metrics, optimizer

    • Store selected metrics in Train and Validation History

    Visualizations

    • Select metrics for verbose output
    Source code(tar.gz)
    Source code(zip)
  • v0.3-beta1.0(Apr 27, 2021)

    Regularization:

    • On weights and biases, location: gradients

      • L1, L2 and ElasticNet
    • On weights and biases, location: cost function

      • L1, L2 and ElasticNet

    Numerical Stability:

    • in functions.py, in cost, added a 1e-25 value to A, to avoid a divide by zero and invalid multiply cases in computations of np.log(A)

    Data Handling:

    • train and validation cost

    Visualization:

    • print: verbose of cost evolution

    Documentation:

    • Improve README
    Source code(tar.gz)
    Source code(zip)
  • v0.2-beta1.0(Apr 27, 2021)

    Files:

    • complete data set: MNIST
    • complete data set: 'fashion-MNIST'

    Tests passed:

    • fashion MNIST
    • previous release tests

    Topology

    • single hidden layer (tested)
    • 1 - 2 hidden layers (tested)
    • different activation functions among hidden layer

    Activation functions:

    • For hidden -> Sigmoid, Tanh, ReLU (tested and not working)
    • For output -> Softmax

    Cost Functions:

    • 'binary-logloss' (Binary-class Cross-Entropy)
    • 'multi-logloss' (Multi-class Cross-Entropy)

    Metrics:

    • Confusion matrix (Multi-class)
    • Accuracy (Multi-class)
    Source code(tar.gz)
    Source code(zip)
  • v0.1-beta1.0(Apr 26, 2021)

    First release!

    Tests passed:

    • Random XOR data classification

    Sequential model:

    • hidden_l: Number of neurons per hidden layer (list of int, with a length of l_hidden)
    • hidden_a: Activation of hidden layers (list of str, with length l_hidden)
    • output_n: Number of neurons in the output layer (1)
    • output_a: Activation of output layer (str)

    Layer transformations:

    • linear

    Activation functions:

    • For hidden -> Sigmoid, Tanh
    • For output -> Sigmoid (Binary)

    Weights Initialization:

    • Xavier normal, Xavier uniform, common uniform, according to [1]

    Training Schemes:

    • Gradient Descent

    Cost Functions:

    • Sum of Squared Error (SSE) or Residual Sum of Squares (RSS)

    Metrics:

    • Accuracy (Binary)
    Source code(tar.gz)
    Source code(zip)
    LucidNet_v0.1-beta1.0.zip(111.97 MB)
Owner
lucidmode
A lucid framework for interpretable machine learning models
lucidmode
Highly interpretable classifiers for scikit learn, producing easily understood decision rules instead of black box models

Highly interpretable, sklearn-compatible classifier based on decision rules This is a scikit-learn compatible wrapper for the Bayesian Rule List class

Tamas Madl 482 Nov 19, 2022
A collection of interactive machine-learning experiments: 🏋️models training + 🎨models demo

?? Interactive Machine Learning experiments: ??️models training + ??models demo

Oleksii Trekhleb 1.4k Jan 6, 2023
A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.

Master status: Development status: Package information: TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assista

Epistasis Lab at UPenn 8.9k Jan 9, 2023
Python Extreme Learning Machine (ELM) is a machine learning technique used for classification/regression tasks.

Python Extreme Learning Machine (ELM) Python Extreme Learning Machine (ELM) is a machine learning technique used for classification/regression tasks.

Augusto Almeida 84 Nov 25, 2022
Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques

Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques such as online, hashing, allreduce, reductions, learning2search, active, and interactive learning.

Vowpal Wabbit 8.1k Dec 30, 2022
CD) in machine learning projectsImplementing continuous integration & delivery (CI/CD) in machine learning projects

CML with cloud compute This repository contains a sample project using CML with Terraform (via the cml-runner function) to launch an AWS EC2 instance

Iterative 19 Oct 3, 2022
MIT-Machine Learning with Python–From Linear Models to Deep Learning

MIT-Machine Learning with Python–From Linear Models to Deep Learning | One of the 5 courses in MIT MicroMasters in Statistics & Data Science Welcome t

null 2 Aug 23, 2022
Uber Open Source 1.6k Dec 31, 2022
Apache Liminal is an end-to-end platform for data engineers & scientists, allowing them to build, train and deploy machine learning models in a robust and agile way

Apache Liminals goal is to operationalise the machine learning process, allowing data scientists to quickly transition from a successful experiment to an automated pipeline of model training, validation, deployment and inference in production. Liminal provides a Domain Specific Language to build ML workflows on top of Apache Airflow.

The Apache Software Foundation 121 Dec 28, 2022