Can you give me some advice?
My class reading the dataset (semi-supervised vos):
class MyDataset(BaseData):
def __init__(self, train=True, sampled_frames=3,
transform=None, max_skip=5, increment=5, samples_per_video=12):
print(" ==>> Using MyDataset <<== ")
data_dir = os.path.join(ROOT, 'mydata_dir')
if train:
dbfile = os.path.join(data_dir, 'ImageSets', 'train_valid.txt')
else:
dbfile = os.path.join(data_dir, 'ImageSets', 'test.txt')
self.imgdir = os.path.join(data_dir, 'JPEGImages')
self.annodir = os.path.join(data_dir, 'Annotations')
self.root = data_dir
self.max_obj = 0
# extract annotation information
self.videos = []
with open(dbfile, 'r') as f:
video_name = f.readline()
while video_name:
video_name = video_name.strip()
self.videos.append(video_name)
objn = np.array(Image.open(os.path.join(self.annodir, video_name, '00000.png')).convert('P')).max()
self.max_obj = max(objn, self.max_obj)
video_name = f.readline()
print(" ==>> Length of Trainset: {}".format(len(self.videos)))
self.samples_per_video = samples_per_video
self.sampled_frames = sampled_frames
self.length = samples_per_video * len(self.videos)
self.max_skip = max_skip
self.increment = increment
self.transform = transform
self.train = train
def increase_max_skip(self):
self.max_skip = min(self.max_skip + self.increment, MAX_TRAINING_SKIP)
def set_max_skip(self, max_skip):
self.max_skip = max_skip
def __getitem__(self, idx):
video_name = self.videos[(idx // self.samples_per_video)]
imgfolder = os.path.join(self.imgdir, video_name)
annofolder = os.path.join(self.annodir, video_name)
frames = [name[:5] for name in os.listdir(imgfolder)]
frames.sort()
nframes = len(frames)
num_obj = 0
while num_obj == 0:
if self.train:
last_sample = -1
sample_frame = []
nsamples = min(self.sampled_frames, nframes)
for i in range(nsamples):
if i == 0:
last_sample = random.sample(range(0, nframes - nsamples + 1), 1)[0]
else:
last_sample = random.sample(
range(last_sample + 1, min(last_sample + self.max_skip + 1, nframes - nsamples + i + 1)),
1)[0]
sample_frame.append(frames[last_sample])
mask = [np.array(Image.open(os.path.join(annofolder, name + '.png'))) for name in sample_frame]
else:
sample_frame = frames
mask = []
for i, name in enumerate(sample_frame):
if i == 0:
mask.append(np.array(Image.open(os.path.join(annofolder, name + '.png'))))
else:
mask.append(np.ones_like(mask[0]) * 255)
frame = [np.array(Image.open(os.path.join(imgfolder, name + '.jpg'))) for name in sample_frame]
# clear dirty data
for msk in mask:
msk[msk == 255] = 0
num_obj = mask[0].max()
# if self.train:
# num_obj = min(num_obj, MAX_TRAINING_OBJ)
info = dict(
name=video_name,
palette=Image.open(os.path.join(annofolder, frames[0] + '.png')).getpalette(),
size=frame[0].shape[:2],
frame_index_list=sample_frame,
)
mask = [convert_mask(msk, self.max_obj) for msk in mask]
if self.transform is None:
raise RuntimeError('Lack of proper transformation')
frame, mask = self.transform(frame, mask, False)
if self.train:
num_obj = 0
for i in range(1, MAX_TRAINING_OBJ + 1):
if torch.sum(mask[0, i]) > 0:
num_obj += 1
else:
break
return frame, mask, num_obj, info
def __len__(self):
return self.length
DATA_CONTAINER['MyDataset'] = MyDataset
and the config:
from easydict import EasyDict
OPTION = EasyDict()
# ------------------------------------------ data configuration ---------------------------------------------
OPTION.trainset = 'MyDataset'
OPTION.valset = 'MyDataset'
OPTION.datafreq = [5, 1] # unused
OPTION.input_size = (384, 384) # input image size
OPTION.sampled_frames = 4 # min sampled time length while trianing
# OPTION.max_skip = [5, 3] # max skip time length while trianing
OPTION.max_skip = 3 # max skip time length while trianing
OPTION.samples_per_video = 2 # sample numbers per video
# ----------------------------------------- model configuration ---------------------------------------------
OPTION.keydim = 128
OPTION.valdim = 512
OPTION.save_freq = 5
OPTION.epochs_per_increment = 5
# ---------------------------------------- training configuration -------------------------------------------
OPTION.epochs = 120
OPTION.train_batch = 4
OPTION.learning_rate = 0.00001
OPTION.gamma = 0.1
OPTION.momentum = (0.9, 0.999)
OPTION.solver = 'adam' # 'sgd' or 'adam'
OPTION.weight_decay = 5e-4
OPTION.iter_size = 1
OPTION.milestone = [] # epochs to degrades the learning rate
OPTION.loss = 'both' # 'ce' or 'iou' or 'both'
OPTION.mode = 'recurrent' # 'mask'(记忆网络中存储的是真值) or 'recurrent'(原始论文的循环训练的方式) or 'threshold'
OPTION.iou_threshold = 0.65 # used only for 'threshold' training
# ---------------------------------------- testing configuration --------------------------------------------
OPTION.epoch_per_test = 1
# ------------------------------------------- other configuration -------------------------------------------
OPTION.checkpoint = 'mydataset'
OPTION.initial = '/home/lart/Coding/STM/STM_weights.pth' # path to initialize the backbone
# OPTION.initial = '' # path to initialize the backbone
OPTION.resume = '' # path to restart from the checkpoint
OPTION.gpu_id = '0' # defualt gpu-id (if not specified in cmd)
OPTION.workers = 4
OPTION.save_indexed_format = True # set True to save indexed format png file, otherwise segmentation with original image
OPTION.output_dir = 'output'
Here, I use the pretrained parameter file STM_weights.pth
by STM's author to initialize the model.
My train.py
:
import argparse
import os
import os.path as osp
import random
import time
from collections import OrderedDict
import torch.nn as nn
import torch.optim as optim
import torch.utils.data as data
from libs.dataset.data import DATA_CONTAINER, multibatch_collate_fn
from libs.dataset.transform import TrainTransform, TestTransform
# from libs.models.models import STM
from libs.models.models_cp import STM
from libs.utils.logger import Logger, AverageMeter
from libs.utils.loss import *
from libs.utils.utility import save_checkpoint, adjust_learning_rate
from options import OPTION as opt
MAX_FLT = 1e6
def parse_args():
parser = argparse.ArgumentParser('Training Mask Segmentation')
parser.add_argument('--gpu', default='', type=str, help='set gpu id to train the network, split with comma')
return parser.parse_args()
def main():
start_epoch = 0
random.seed(0)
args = parse_args()
# Use GPU
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu if args.gpu != '' else str(opt.gpu_id)
use_gpu = torch.cuda.is_available() and (args.gpu != '' or int(opt.gpu_id)) >= 0
gpu_ids = [int(val) for val in args.gpu.split(',')]
if not os.path.isdir(opt.checkpoint):
os.makedirs(opt.checkpoint)
# Data
print('==> Preparing dataset')
input_dim = opt.input_size
train_transformer = TrainTransform(size=input_dim)
test_transformer = TestTransform(size=input_dim)
try:
if isinstance(opt.trainset, list):
print("[DATASET] List {}".format(opt.trainset))
datalist = []
for dataset, freq, max_skip in zip(opt.trainset, opt.datafreq, opt.max_skip):
ds = DATA_CONTAINER[dataset](
train=True,
sampled_frames=opt.sampled_frames,
transform=train_transformer,
max_skip=max_skip,
samples_per_video=opt.samples_per_video
)
datalist += [ds] * freq
trainset = data.ConcatDataset(datalist)
else:
print("[DATASET] {}".format(opt.trainset))
max_skip = opt.max_skip[0] if isinstance(opt.max_skip, list) else opt.max_skip
trainset = DATA_CONTAINER[opt.trainset](
train=True,
sampled_frames=opt.sampled_frames,
transform=train_transformer,
max_skip=max_skip,
samples_per_video=opt.samples_per_video
)
except KeyError as ke:
print('[ERROR] invalide dataset name is encountered. The current acceptable datasets are:')
print(list(DATA_CONTAINER.keys()))
exit()
# testset = DATA_CONTAINER[opt.valset](
# train=False,
# transform=test_transformer,
# samples_per_video=1
# )
trainloader = data.DataLoader(trainset, batch_size=opt.train_batch, shuffle=True, num_workers=opt.workers,
collate_fn=multibatch_collate_fn, drop_last=True)
# testloader = data.DataLoader(testset, batch_size=1, shuffle=False, num_workers=opt.workers,
# collate_fn=multibatch_collate_fn)
# Model
print("==> creating model")
net = STM(opt.keydim, opt.valdim, 'train',
mode=opt.mode, iou_threshold=opt.iou_threshold)
print(' Total params: %.2fM' % (sum(p.numel() for p in net.parameters()) / 1000000.0))
net.eval()
if use_gpu:
net = net.cuda()
assert opt.train_batch % len(gpu_ids) == 0
net = nn.DataParallel(net, device_ids=gpu_ids, dim=0)
# set training parameters
for p in net.parameters():
p.requires_grad = True
criterion = None
celoss = cross_entropy_loss
if opt.loss == 'ce':
criterion = celoss
elif opt.loss == 'iou':
criterion = mask_iou_loss
elif opt.loss == 'both':
criterion = lambda pred, target, obj: celoss(pred, target, obj) + mask_iou_loss(pred, target, obj)
else:
raise TypeError('unknown training loss %s' % opt.loss)
optimizer = None
if opt.solver == 'sgd':
optimizer = optim.SGD(net.parameters(), lr=opt.learning_rate,
momentum=opt.momentum[0], weight_decay=opt.weight_decay)
elif opt.solver == 'adam':
optimizer = optim.Adam(net.parameters(), lr=opt.learning_rate,
betas=opt.momentum, weight_decay=opt.weight_decay)
else:
raise TypeError('unkown solver type %s' % opt.solver)
# Resume
title = 'STM'
minloss = float('inf')
opt.checkpoint = osp.join(osp.join(opt.checkpoint, opt.valset))
if not osp.exists(opt.checkpoint):
os.mkdir(opt.checkpoint)
if opt.resume:
# Load checkpoint.
print('==> Resuming from checkpoint {}'.format(opt.resume))
assert os.path.isfile(opt.resume), 'Error: no checkpoint directory found!'
# opt.checkpoint = os.path.dirname(opt.resume)
checkpoint = torch.load(opt.resume)
minloss = checkpoint['minloss']
start_epoch = checkpoint['epoch']
net.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
skips = checkpoint['max_skip']
try:
if isinstance(skips, list):
for idx, skip in enumerate(skips):
trainloader.dataset.datasets[idx].set_max_skip(skip)
else:
trainloader.dataset.set_max_skip(skips)
except:
print('[Warning] Initializing max skip fail')
logger = Logger(os.path.join(opt.checkpoint, opt.mode + '_log.txt'), resume=True)
else:
if opt.initial:
print('==> Initialize model with weight file {}'.format(opt.initial))
weight = torch.load(opt.initial)
if isinstance(weight, OrderedDict):
net.module.load_param(weight)
else:
net.module.load_param(weight['state_dict'])
logger = Logger(os.path.join(opt.checkpoint, opt.mode + '_log.txt'), resume=False)
start_epoch = 0
logger.set_items(['Epoch', 'LR', 'Train Loss'])
# Train and val
for epoch in range(start_epoch):
adjust_learning_rate(optimizer, epoch, opt)
for epoch in range(start_epoch, opt.epochs):
print('\nEpoch: [%d | %d] LR: %f' % (epoch + 1, opt.epochs, opt.learning_rate))
adjust_learning_rate(optimizer, epoch, opt)
net.module.phase = 'train'
train_loss = train(trainloader,
model=net,
criterion=criterion,
optimizer=optimizer,
epoch=epoch,
use_cuda=use_gpu,
iter_size=opt.iter_size,
mode=opt.mode,
threshold=opt.iou_threshold)
# no test
# if (epoch + 1) % opt.epoch_per_test == 0:
# net.module.phase = 'test'
# test_loss = test(testloader,
# model=net.module,
# criterion=criterion,
# epoch=epoch,
# use_cuda=use_gpu)
# append logger file
logger.log(epoch + 1, opt.learning_rate, train_loss)
# adjust max skip
if (epoch + 1) % opt.epochs_per_increment == 0:
if isinstance(trainloader.dataset, data.ConcatDataset):
for dataset in trainloader.dataset.datasets:
dataset.increase_max_skip()
else:
trainloader.dataset.increase_max_skip()
# save model
is_best = train_loss <= minloss
minloss = min(minloss, train_loss)
skips = [ds.max_skip for ds in trainloader.dataset.datasets] \
if isinstance(trainloader.dataset, data.ConcatDataset) \
else trainloader.dataset.max_skip
save_checkpoint({
'epoch': epoch + 1,
'state_dict': net.state_dict(),
'loss': train_loss,
'minloss': minloss,
'optimizer': optimizer.state_dict(),
'max_skip': skips,
}, epoch + 1, is_best, checkpoint=opt.checkpoint, filename=opt.mode)
logger.close()
print('minimum loss:')
print(minloss)
def train(trainloader, model, criterion, optimizer, epoch, use_cuda, iter_size, mode, threshold):
# switch to train mode
data_time = AverageMeter()
loss = AverageMeter()
end = time.time()
# bar = Bar('Processing', max=len(trainloader))
optimizer.zero_grad()
for batch_idx, data in enumerate(trainloader):
frames, masks, objs, infos = data
# measure data loading time
data_time.update(time.time() - end)
if use_cuda:
frames = frames.cuda()
masks = masks.cuda()
objs = objs.cuda()
objs[objs == 0] = 1
N, T, C, H, W = frames.size()
max_obj = masks.shape[2] - 1
total_loss = 0.0
out = model(frame=frames, mask=masks, num_objects=objs)
for idx in range(N):
for t in range(1, T):
gt = masks[idx, t:t + 1]
pred = out[idx, t - 1: t]
No = objs[idx].item()
total_loss = total_loss + criterion(pred, gt, No)
total_loss = total_loss / (N * (T - 1))
# record loss
if total_loss.item() > 0.0:
loss.update(total_loss.item(), 1)
# compute gradient and do SGD step (divided by accumulated steps)
total_loss /= iter_size
total_loss.backward()
if (batch_idx + 1) % iter_size == 0:
optimizer.step()
model.zero_grad()
# measure elapsed time
end = time.time()
# plot progress
log = '({batch}/{size}/{epoch}) Name: {name} Idx: {idx} |Data: {data:.3f}s |Loss: {loss:.5f}'.format(
batch=batch_idx + 1,
size=len(trainloader),
epoch=epoch,
name=[infos[i]['name'] for i in range(opt.train_batch)],
idx=[infos[i]['frame_index_list'] for i in range(opt.train_batch)],
data=data_time.val,
loss=loss.avg
)
print(log)
return loss.avg
if __name__ == '__main__':
main()