Reference code for the paper "Cross-Camera Convolutional Color Constancy" (ICCV 2021)

Overview

Cross-Camera Convolutional Color Constancy, ICCV 2021 (Oral)

Mahmoud Afifi1,2, Jonathan T. Barron2, Chloe LeGendre2, Yun-Ta Tsai2, and Francois Bleibel2

1York University   2Google Research

Paper | Poster | PPT | Video

C5_teaser

Reference code for the paper Cross-Camera Convolutional Color Constancy. Mahmoud Afifi, Jonathan T. Barron, Chloe LeGendre, Yun-Ta Tsai, and Francois Bleibel. In ICCV, 2021. If you use this code, please cite our paper:

@InProceedings{C5,
  title={Cross-Camera Convolutional Color Constancy},
  author={Afifi, Mahmoud and Barron, Jonathan T and LeGendre, Chloe and Tsai, Yun-Ta and Bleibel, Francois},
  booktitle = {The IEEE International Conference on Computer Vision (ICCV)},
  year={2021}
}

C5_figure

Code

Prerequisite

  • Pytorch
  • opencv-python
  • tqdm

Training

To train C5, training/validation data should have the following formatting:

- train_folder/
       | image1_sensorname_camera1.png
       | image1_sensorname_camera1_metadata.json
       | image2_sensorname_camera1.png
       | image2_sensorname_camera1_metadata.json
       ...
       | image1_sensorname_camera2.png
       | image1_sensorname_camera2_metadata.json
       ...

In src/ops.py, the function add_camera_name(dataset_dir) can be used to rename image filenames and corresponding ground-truth JSON files. Each JSON file should include a key named either illuminant_color_raw or gt_ill that has the ground-truth illuminant color of the corresponding image.

The training code is given in train.py. The following parameters are required to set model configuration and training data information.

  • --data-num: the number of images used for each inference (additional images + input query image). This was mentioned in the main paper as m.
  • --input-size: number of histogram bins.
  • --learn-G: to use a G multiplier as explained in the paper.
  • --training-dir-in: training image directory.
  • --validation-dir-in: validation image directory; when this variable is None (default), the validation set will be taken from the training data based on the --validation-ratio.
  • --validation-ratio: when --validation-dir-in is None, this argument determines the validation set ratio of the image set in --training-dir-in directory.
  • --augmentation-dir: directory(s) of augmentation data (optional).
  • --model-name: name of the trained model.

The following parameters are useful to control training settings and hyperparameters:

  • --epochs: number of epochs
  • --batch-size: batch size
  • --load-hist: to load histogram if pre-computed (recommended).
  • -optimizer: optimization algorithm for stochastic gradient descent; options are: Adam or SGD.
  • --learning-rate: Learning rate
  • --l2reg: L2 regularization factor
  • --load: to load C5 model from a .pth file; default is False
  • --model-location: when --load is True, this variable should point to the fullpath of the .pth model file.
  • --validation-frequency: validation frequency (in epochs).
  • --cross-validation: To use three-fold cross-validation. When this variable is True, --validation-dir-in and --validation-ratio will be ignored and 3-fold cross-validation, on the data provided in the --training-dir-in, will be applied.
  • --gpu: GPU device ID.
  • --smoothness-factor-*: smoothness loss factor of the following model components: F (conv filter), B (bias), G (multiplier layer). For example, --smoothness-factor-F can be used to set the smoothness loss for the conv filter.
  • --increasing-batch-size: for increasing batch size during training.
  • --grad-clip-value: gradient clipping value; if it's set to 0 (default), no clipping is applied.

Testing

To test a pre-trained C5 model, testing data should have the following formatting:

- test_folder/
       | image1_sensorname_camera1.png
       | image1_sensorname_camera1_metadata.json
       | image2_sensorname_camera1.png
       | image2_sensorname_camera1_metadata.json
       ...
       | image1_sensorname_camera2.png
       | image1_sensorname_camera2_metadata.json
       ...

The testing code is given in test.py. The following parameters are required to set model configuration and testing data information.

  • --model-name: name of the trained model.
  • --data-num: the number of images used for each inference (additional images + input query image). This was mentioned in the main paper as m.
  • --input-size: number of histogram bins.
  • --g-multiplier: to use a G multiplier as explained in the paper.
  • --testing-dir-in: testing image directory.
  • --batch-size: batch size
  • --load-hist: to load histogram if pre-computed (recommended).
  • --multiple_test: to apply multiple tests (ten as mentioned in the paper) and save their results.
  • --white-balance: to save white-balanced testing images.
  • --cross-validation: to use three-fold cross-validation. When it is set to True, it is supposed to have three pre-trained models saved with a postfix of the fold number. The testing image filenames should be listed in .npy files located in the folds directory with the same name of the dataset, which should be the same as the folder name in --testing-dir-in.
  • --gpu: GPU device ID.

In the images directory, there are few examples captured by Mobile Sony IMX135 from the INTEL-TAU dataset. To white balance these raw images, as shown in the figure below, using a C5 model (trained on DSLR cameras from NUS and Gehler-Shi datasets), use the following command:

python test.py --testing-dir-in ./images --white-balance True --model-name C5_m_7_h_64

c5_examples

To test with the gain multiplie, use the following command:

python test.py --testing-dir-in ./images --white-balance True --g-multiplier True --model-name C5_m_7_h_64_w_G

Note that in testing, C5 does not require any metadata. The testing code only uses JSON files to load ground-truth illumination for comparisons with our estimated values.

Data augmentation

The raw-to-raw augmentation functions are provided in src/aug_ops.opy. Call the set_sampling_params function to set sampling parameters (e.g., excluding certain camera/dataset from the soruce set, determine the number of augmented images, etc.). Then, call the map_raw_images function to generate a new augmentation set with the determined parameters. The function map_raw_images takes four arguments:

  • xyz_img_dir: directory of XYZ images; you can download the CIE XYZ images from here. All images were transformed to the CIE XYZ space after applying the black-level normalization and masking out the calibration object (i.e., the color rendition chart or SpyderCUBE).
  • target_cameras: a list of one or more of the following camera models: Canon EOS 550D, Canon EOS 5D, Canon EOS-1DS, Canon EOS-1Ds Mark III, Fujifilm X-M1, Nikon D40, Nikon D5200, Olympus E-PL6, Panasonic DMC-GX1, Samsung NX2000, Sony SLT-A57, or All.
  • output_dir: output directory to save the augmented images and their metadata files.
  • params: sampling parameters set by the set_sampling_params function.
Comments
  • Question about your data augmentation method and CIE XYZ color space

    Question about your data augmentation method and CIE XYZ color space

    Hi, @mahmoudnafifi , I have a question about your data augmentation method.

    I think that I have a little confusion about the color space transform process in general ISP, which converts WB applied raw image into CIE XYZ color space. (I referenced the 2019 ICCV tutorial by your supervisor, Professor Michael Brown)

    As far as I know, CST only changes the axis(or basis) representing the color, it doesn't change the unique color itself. So from what I understand, the CIE XYZ images (with WB applied) for the same scene on two different devices are different because they represent colors (unique colors, which are different from each other) observed by different sensors in the canonical color space (axis, CIE XYZ space).

    However, according to the data augmentation method presented in the paper, the above sentence I said is wrong. According to the method used in your paper, since images in CIE XYZ space are device-independent, data augmentation in RAW corresponding to each device is possible using conversion/inverse transformation to CIE XYZ space.

    I'd appreciate it if you could let me know which of the two is correct in the part where I'm mistaken.

    opened by DY112 2
  • about preprocessing of the input image

    about preprocessing of the input image

    Hi Mahmoud,

    Thanks for sharing the great work! May I know whether there is some preprocessing to the images input to the network. Here is what I observed, when the input is from the ffcc's dataset: https://github.com/google/ffcc/tree/master/data the output looks good. But if input other data like NUS from here: http://cvil.eecs.yorku.ca/projects/public_html/illuminant/illuminant.html the output is bad. Is this because I missed some preprocessing steps?

    Thanks Simon

    opened by SHMCU 1
  • what dataset is the pre-trained model trained on?

    what dataset is the pre-trained model trained on?

    What dataset is the pre-trained model trained on? If I want to run test, is the datasets like Cheng and Gehler be good test samples? I am just concerned whether these two sets are already in the training set for the pre-trained models.

    opened by SHMCU 1
  • some question about the input image type

    some question about the input image type

    hello,I am very interested in your C5 work. But I have some doubts on the format of the input image. When I use my own dataset, should its data be 16-bit?,Is it ok if I directly enter a .hdr format? When the output is generated, what operations should be performed to get the feeling that accords with the human eye, such as CCM, AE and other operations? Greatful thanks

    opened by TLcode001 2
  • Some questions about the Training and Testing details

    Some questions about the Training and Testing details

    Hi Dr. Afifi, Thanks for your great work! I have read many of your inspiring papers about color constancy. From a private point of view, most of your papers are elegant enough and easy to understand, except the 'C5', which really confused me a lot.

    I do not know if I have some misunderstanding of related learning such as Transfer learning or Transductive learning. I just could not understand the core training and testing processing of your method.

    I have three questions below:

    1. From your abstract, it seems that you only use the additional labels image at test time.

    C5 approaches this problem through the lens of transductive inference: additional unlabeled images are provided as input to the model at test time

    However, you also highlight that even in the training process, the model is trained on labeled and unlabeled images……

    Our system is trained using labeled (and unlabeled) images from multiple cameras, but at test time our model is able to look at a set of the (unlabeled) test set images from a new camera.

    1. I am not sure if I understand the meaning of query image and additional image in your training and testing procedure.

    For instance, if you use sensor1's image as training and testing on sensor2

    • Training

    The query image represents one of an image with a label from sensor1 and the additional image is selected from sensor1 without labels, am I right?

    • Testing

    The query image represents one of an image with a label from sensor2 and the additional images are selected from sensor2 without labels, actually, just the same as the Training process except for the dataset, am I right?

    If so, what the paper said that did not use any labels which are biased for the truth

    In contrast, our technique requires no ground-truth labels for the unseen camera, and is essentially calibration-free for this new sensor.

    If not so, I am confused that how the model could be updated with its parameters without labels in the testing process.

    1. The leave-one-out evaluation approach

    For camera-specific, it is clear that leave-one-out means you use n-1 images as training and the left 1 image as testing, looping it n times. However, I do not understand what the paper which focuses on cross-sensor, said here:

    we adopt a leave-one-out cross-validation evaluation approach: for each dataset, we exclude all scenes and cameras used by the test set from our training images. For a fair comparison with FFCC [13], we trained FFCC using the same leave-one-out cross-validation evaluation approach.

    Can you describe the detail of the leave-one-out method here, for instance, how did you re-train the FFCC method using such method?

    The three above questions may be connected with each other. I will be very grateful for your reply~

    opened by WayWillam 1
Owner
Mahmoud Afifi
Mahmoud Afifi
Code for C2-Matching (CVPR2021). Paper: Robust Reference-based Super-Resolution via C2-Matching.

C2-Matching (CVPR2021) This repository contains the implementation of the following paper: Robust Reference-based Super-Resolution via C2-Matching Yum

Yuming Jiang 151 Dec 26, 2022
Reference code for the paper CAMS: Color-Aware Multi-Style Transfer.

CAMS: Color-Aware Multi-Style Transfer Mahmoud Afifi1, Abdullah Abuolaim*1, Mostafa Hussien*2, Marcus A. Brubaker1, Michael S. Brown1 1York University

Mahmoud Afifi 36 Dec 4, 2022
Reference implementation of code generation projects from Facebook AI Research. General toolkit to apply machine learning to code, from dataset creation to model training and evaluation. Comes with pretrained models.

This repository is a toolkit to do machine learning for programming languages. It implements tokenization, dataset preprocessing, model training and m

Facebook Research 408 Jan 1, 2023
Code for ICCV 2021 paper "Distilling Holistic Knowledge with Graph Neural Networks"

HKD Code for ICCV 2021 paper "Distilling Holistic Knowledge with Graph Neural Networks" cifia-100 result The implementation of compared methods are ba

Wang Yucheng 30 Dec 18, 2022
code for ICCV 2021 paper 'Generalized Source-free Domain Adaptation'

G-SFDA Code (based on pytorch 1.3) for our ICCV 2021 paper 'Generalized Source-free Domain Adaptation'. [project] [paper]. Dataset preparing Download

Shiqi Yang 84 Dec 26, 2022
Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators..

ARAPReg Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators.. Installation The cod

Bo Sun 132 Nov 28, 2022
Code for the ICCV 2021 paper "Pixel Difference Networks for Efficient Edge Detection" (Oral).

Pixel Difference Convolution This repository contains the PyTorch implementation for "Pixel Difference Networks for Efficient Edge Detection" by Zhuo

Alex 236 Dec 21, 2022
Sync2Gen Code for ICCV 2021 paper: Scene Synthesis via Uncertainty-Driven Attribute Synchronization

Sync2Gen Code for ICCV 2021 paper: Scene Synthesis via Uncertainty-Driven Attribute Synchronization 0. Environment Environment: python 3.6 and cuda 10

Haitao Yang 62 Dec 30, 2022
Code for the paper "Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds" (ICCV 2021)

Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds This is the official code implementation for the paper "Spatio-temporal Se

Hesper 63 Jan 5, 2023
Code release for ICCV 2021 paper "Anticipative Video Transformer"

Anticipative Video Transformer Ranked first in the Action Anticipation task of the CVPR 2021 EPIC-Kitchens Challenge! (entry: AVT-FB-UT) [project page

Facebook Research 123 Dec 13, 2022
Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

null 235 Dec 26, 2022
Demo code for ICCV 2021 paper "Sensor-Guided Optical Flow"

Sensor-Guided Optical Flow Demo code for "Sensor-Guided Optical Flow", ICCV 2021 This code is provided to replicate results with flow hints obtained f

null 10 Mar 16, 2022
Code for ICCV 2021 paper "HuMoR: 3D Human Motion Model for Robust Pose Estimation"

Code for ICCV 2021 paper "HuMoR: 3D Human Motion Model for Robust Pose Estimation"

Davis Rempe 367 Dec 24, 2022
Code for the ICCV 2021 Workshop paper: A Unified Efficient Pyramid Transformer for Semantic Segmentation.

Unified-EPT Code for the ICCV 2021 Workshop paper: A Unified Efficient Pyramid Transformer for Semantic Segmentation. Installation Linux, CUDA>=10.0,

null 29 Aug 23, 2022
Starter code for the ICCV 2021 paper, 'Detecting Invisible People'

Detecting Invisible People [ICCV 2021 Paper] [Website] Tarasha Khurana, Achal Dave, Deva Ramanan Introduction This repository contains code for Detect

Tarasha Khurana 28 Sep 16, 2022
Wanli Li and Tieyun Qian: Exploit a Multi-head Reference Graph for Semi-supervised Relation Extraction, IJCNN 2021

MRefG Wanli Li and Tieyun Qian: "Exploit a Multi-head Reference Graph for Semi-supervised Relation Extraction", IJCNN 2021 1. Requirements To reproduc

万理 5 Jul 26, 2022
FindFunc is an IDA PRO plugin to find code functions that contain a certain assembly or byte pattern, reference a certain name or string, or conform to various other constraints.

FindFunc: Advanced Filtering/Finding of Functions in IDA Pro FindFunc is an IDA Pro plugin to find code functions that contain a certain assembly or b

null 213 Dec 17, 2022
Official implementation of the paper Vision Transformer with Progressive Sampling, ICCV 2021.

Vision Transformer with Progressive Sampling This is the official implementation of the paper Vision Transformer with Progressive Sampling, ICCV 2021.

yuexy 123 Jan 1, 2023