TYolov5: A Temporal Yolov5 Detector Based on Quasi-Recurrent Neural Networks for Real-Time Handgun Detection in Video

Overview

TYolov5: A Temporal Yolov5 Detector Based on Quasi-Recurrent Neural Networks for Real-Time Handgun Detection in Video

Timely handgun detection is a crucial problem to improve public safety; nevertheless, the effectiveness of many surveillance systems still depends of finite human attention. Much of the previous research on handgun detection is based on static image detectors, leaving aside valuable temporal information that could be used to improve object detection in videos. To improve the performance of surveillance systems, a real-time temporal handgun detection system should be built. Using Temporal Yolov5, an architecture based on Quasi-Recurrent Neural Networks, temporal information is extracted from video to improve the results of handgun detection. Moreover, two publicly available datasets are proposed, labeled with hands, guns, and phones. One containing 2199 static images to train static detectors, and another with 5960 frames of videos to train temporal modules. Additionally, we explore two temporal data augmentation techniques based on Mosaic and Mixup. The resulting systems are three temporal architectures: one focused in reducing inference with a mAP50:95 of 55.9, another in having a good balance between inference and accuracy with a mAP50:95 of 59, and a last one specialized in accuracy with a mAP50:95 of 60.2. Temporal Yolov5 achieves real-time detection in the small and medium architectures. Moreover, it takes advantage of temporal features contained in videos to perform better than Yolov5 in our temporal dataset, making TYolov5 suitable for real-world applications.

If you use this code for your research, please consider citing:

Mario Alberto Duran-Vega, Miguel Gonzalez-Mendoza, Leonardo Chang, Cuauhtemoc Daniel Suarez-Ramirez https://arxiv.org/abs/2111.08867

Comments
  • Error while starting training

    Error while starting training

    I have set up the dataset etc. When I start training in one of the models' directory (eg. "/1 SConvLSTM/yolov5/", I get the following error after the image scanning is done:

    Scanning labels ../../../../datasets//all_in_one/train/labels.cache (20942 found, 0 missing, 3847 empty, 0 duplicate, for 24789 images): 24789it [00:00, 30033.60it/s] Traceback (most recent call last): File "train.py", line 544, in <module> train(hyp, opt, device, tb_writer) File "train.py", line 196, in train testloader = create_dataloader(test_path, imgsz_test, total_batch_size, gs, opt, File "/home/local/xxxx/TYolov5/1 SConvLSTM/yolov5/utils/datasets.py", line 54, in create_dataloader dataset = LoadImagesAndLabels(path, imgsz, batch_size, File "/home/local/xxxx/TYolov5/1 SConvLSTM/yolov5/utils/datasets.py", line 385, in __init__ cache = torch.load(cache_path) # load File "/home/local/xxxx/miniconda3/envs/tyolo/lib/python3.8/site-packages/torch/serialization.py", line 585, in load return _legacy_load(opened_file, map_location, pickle_module, **pickle_load_args) File "/home/local/xxxx/miniconda3/envs/tyolo/lib/python3.8/site-packages/torch/serialization.py", line 755, in _legacy_load magic_number = pickle_module.load(f, **pickle_load_args) _pickle.UnpicklingError: STACK_GLOBAL requires str

    I looked around and it seems that the issue might be caused by loading the cached labels. What do you think would fix the issue?

    opened by madr3z 1
  • Unable to run detect.py

    Unable to run detect.py

    Hi I am trying to run detect.py file using image as well as camera as input source, but in both cases I get this error:

    Using CPU
    
    Fusing layers...
    Model Summary: 152 layers, 3.20299e+07 parameters, 0 gradients
    image 1/1 /Users/user/Downloads/Temporal_YOLOv5/dataset/HGP/images/val2017/V00000118.png: Traceback (most recent call last):
      File "detect.py", line 170, in <module>
        detect()
      File "detect.py", line 73, in detect
        pred = model(img, augment=opt.augment)[0]
      File "/Users/user/miniconda3/envs/TYOLO/lib/python3.8/site-packages/torch/nn/modules/module.py", line 722, in _call_impl
        result = self.forward(*input, **kwargs)
      File "/Users/user/Downloads/Temporal_YOLOv5/TYolov5/1 SConvLSTM/yolov5/models/yolo.py", line 186, in forward
        return self.forward_once(x, masksOP, profile)  # single-scale inference, train
      File "/Users/user/Downloads/Temporal_YOLOv5/TYolov5/1 SConvLSTM/yolov5/models/yolo.py", line 207, in forward_once
        x = m(x, masksOP)
      File "/Users/user/miniconda3/envs/TYOLO/lib/python3.8/site-packages/torch/nn/modules/module.py", line 722, in _call_impl
        result = self.forward(*input, **kwargs)
      File "/Users/user/Downloads/Temporal_YOLOv5/TYolov5/1 SConvLSTM/yolov5/models/yolo.py", line 98, in forward
        cx = x[i].view(-1, self.sl, x[i].shape[1], x[i].shape[2], x[i].shape[3])
    RuntimeError: shape '[-1, 2, 128, 80, 80]' is invalid for input of size 819200
    

    I got this error running detect.py from both SConvLSTM as well as SQRNN folders. I tried running this code with both PyTorch=1.6.0 / 1.7.1, but still the same issue. Thanks.

    opened by anujdutt9 0
  • Where exactly in the code have you incorporated QRNN, ConvLSTM, etc part with Yolov5? Because all the Yolov5 models seems to be same as it is.

    Where exactly in the code have you incorporated QRNN, ConvLSTM, etc part with Yolov5? Because all the Yolov5 models seems to be same as it is.

    I am working on Yolov5. I have checked this repo. All the models of Yolov5 is the same as it is. Didn't see any chnages.

    I wished to know how exactly or where in the code have you incorporated the LSTM, QRNN portion?

    Waiting for your response in anticipation. Thanks !

    opened by lucysumi 1
  • Some questions

    Some questions

    I try this code, but in one min-batch,the images is shuffled. The images are not arranged in the order they appear in the video.How to ensure that what the network extracts is timing information, not the accuracy improvement caused by the participation of model parameters. thanks!

    opened by Linaom1214 0
  • when I alter seq_len, it makes this problem

    when I alter seq_len, it makes this problem

    index 65 is out of bounds for dimension 0 with size 64 File "/home/wch/TYolov5/4 SQRNN/yolov5/utils/general.py", line 507, in compute_loss ps = pi[b, a, gj, gi] # prediction subset corresponding to targets File "/home/wch/TYolov5/4 SQRNN/yolov5/train.py", line 342, in train model, model.model[-1].maps_outputs, att_criterion, masks) File "/home/wch/TYolov5/4 SQRNN/yolov5/train.py", line 548, in train(hyp, opt, device, tb_writer)

    opened by wch243294382 0
  • RuntimeError: Error(s) in loading state_dict for Model:         Missing key(s) in state_dict: Unexpected key(s) in state_dict:

    RuntimeError: Error(s) in loading state_dict for Model: Missing key(s) in state_dict: Unexpected key(s) in state_dict:

    When I start training, the following error appears: RuntimeError: Error(s) in loading state_dict for Model: Missing key(s) in state_dict: "model.0.conv.conv.weight", "model.0.conv.bn.weight", "model.0.conv.bn.bias", "model.0.conv.bn.running_mean", "model.0.conv.bn.running_var", "model.1.conv.weight", "model.1.bn.weight", "model.1.bn.bias", "model.1.bn.running_mean", "model.1.bn.running_var", "model.2.cv1.conv.weight", "model.2.cv1.bn.weight", "model.2.cv1.bn.bias", "model.2.cv1.bn.running_mean", "model.2.cv1.bn.running_var", "model.2.cv2.weight", "model.2.cv3.weight", "model.2.cv4.conv.weight", "model.2.cv4.bn.weight", "model.2.cv4.bn.bias", "model.2.cv4.bn.running_mean", "model.2.cv4.bn.running_var", "model.2.bn.weight", "model.2.bn.bias", "model.2.bn.running_mean", "model.2.bn.running_var", "model.2.m.0.cv1.conv.weight", "model.2.m.0.cv1.bn.weight", "model.2.m.0.cv1.bn.bias", "model.2.m.0.cv1.bn.running_mean", "model.2.m.0.cv1.bn.running_var", "model.2.m.0.cv2.conv.weight", "model.2.m.0.cv2.bn.weight", "model.2.m.0.cv2.bn.bias", "model.2.m.0.cv2.bn.running_mean", "model.2.m.0.cv2.bn.running_var", "model.3.conv.weight", "model.3.bn.weight", "model.3.bn.bias", "model.3.bn.running_mean", "model.3.bn.running_var", "model.4.cv1.conv.weight", "model.4.cv1.bn.weight", "model.4.cv1.bn.bias", "model.4.cv1.bn.running_mean", "model.4.cv1.bn.running_var", "model.4.cv2.weight", "model.4.cv3.weight", "model.4.cv4.conv.weight", "model.4.cv4.bn.weight", "model.4.cv4.bn.bias", "model.4.cv4.bn.running_mean", "model.4.cv4.bn.running_var", "model.4.bn.weight", "model.4.bn.bias", "model.4.bn.running_mean", "model.4.bn.running_var", "model.4.m.0.cv1.conv.weight", "model.4.m.0.cv1.bn.weight", "model.4.m.0.cv1.bn.bias", "model.4.m.0.cv1.bn.running_mean", "model.4.m.0.cv1.bn.running_var", "model.4.m.0.cv2.conv.weight", "model.4.m.0.cv2.bn.weight", "model.4.m.0.cv2.bn.bias", "model.4.m.0.cv2.bn.running_mean", "model.4.m.0.cv2.bn.running_var", "model.4.m.1.cv1.conv.weight", "model.4.m.1.cv1.bn.weight", "model.4.m.1.cv1.bn.bias", "model.4.m.1.cv1.bn.running_mean", "model.4.m.1.cv1.bn.running_var", "model.4.m.1.cv2.conv.weight", "model.4.m.1.cv2.bn.weight", "model.4.m.1.cv2.bn.bias", "model.4.m.1.cv2.bn.running_mean", "model.4.m.1.cv2.bn.running_var", "model.4.m.2.cv1.conv.weight", "model.4.m.2.cv1.bn.weight", "model.4.m.2.cv1.bn.bias", "model.4.m.2.cv1.bn.running_mean", "model.4.m.2.cv1.bn.running_var", "model.4.m.2.cv2.conv.weight", "model.4.m.2.cv2.bn.weight", "model.4.m.2.cv2.bn.bias", "model.4.m.2.cv2.bn.running_mean", "model.4.m.2.cv2.bn.running_var", "model.5.conv.weight", "model.5.bn.weight", "model.5.bn.bias", "model.5.bn.running_mean", "model.5.bn.running_var", "model.6.cv1.conv.weight", "model.6.cv1.bn.weight", "model.6.cv1.bn.bias", "model.6.cv1.bn.running_mean", "model.6.cv1.bn.running_var", "model.6.cv2.weight", "model.6.cv3.weight", "model.6.cv4.conv.weight", "model.6.cv4.bn.weight", "model.6.cv4.bn.bias", "model.6.cv4.bn.running_mean", "model.6.cv4.bn.running_var", "model.6.bn.weight", "model.6.bn.bias", "model.6.bn.running_mean", "model.6.bn.running_var", "model.6.m.0.cv1.conv.weight", "model.6.m.0.cv1.bn.weight", "model.6.m.0.cv1.bn.bias", "model.6.m.0.cv1.bn.running_mean", "model.6.m.0.cv1.bn.running_var", "model.6.m.0.cv2.conv.weight", "model.6.m.0.cv2.bn.weight", "model.6.m.0.cv2.bn.bias", "model.6.m.0.cv2.bn.running_mean", "model.6.m.0.cv2.bn.running_var", "model.6.m.1.cv1.conv.weight", "model.6.m.1.cv1.bn.weight", "model.6.m.1.cv1.bn.bias", "model.6.m.1.cv1.bn.running_mean", "model.6.m.1.cv1.bn.running_var", "model.6.m.1.cv2.conv.weight", "model.6.m.1.cv2.bn.weight", "model.6.m.1.cv2.bn.bias", "model.6.m.1.cv2.bn.running_mean", "model.6.m.1.cv2.bn.running_var", "model.6.m.2.cv1.conv.weight", "model.6.m.2.cv1.bn.weight", "model.6.m.2.cv1.bn.bias", "model.6.m.2.cv1.bn.running_mean", "model.6.m.2.cv1.bn.running_var", "model.6.m.2.cv2.conv.weight", "model.6.m.2.cv2.bn.weight", "model.6.m.2.cv2.bn.bias", "model.6.m.2.cv2.bn.running_mean", "model.6.m.2.cv2.bn.running_var", "model.7.conv.weight", "model.7.bn.weight", "model.7.bn.bias", "model.7.bn.running_mean", "model.7.bn.running_var", "model.8.cv1.conv.weight", "model.8.cv1.bn.weight", "model.8.cv1.bn.bias", "model.8.cv1.bn.running_mean", "model.8.cv1.bn.running_var", "model.8.cv2.conv.weight", "model.8.cv2.bn.weight", "model.8.cv2.bn.bias", "model.8.cv2.bn.running_mean", "model.8.cv2.bn.running_var", "model.9.cv1.conv.weight", "model.9.cv1.bn.weight", "model.9.cv1.bn.bias", "model.9.cv1.bn.running_mean", "model.9.cv1.bn.running_var", "model.9.cv2.weight", "model.9.cv3.weight", "model.9.cv4.conv.weight", "model.9.cv4.bn.weight", "model.9.cv4.bn.bias", "model.9.cv4.bn.running_mean", "model.9.cv4.bn.running_var", "model.9.bn.weight", "model.9.bn.bias", "model.9.bn.running_mean", "model.9.bn.running_var", "model.9.m.0.cv1.conv.weight", "model.9.m.0.cv1.bn.weight", "model.9.m.0.cv1.bn.bias", "model.9.m.0.cv1.bn.running_mean", "model.9.m.0.cv1.bn.running_var", "model.9.m.0.cv2.conv.weight", "model.9.m.0.cv2.bn.weight", "model.9.m.0.cv2.bn.bias", "model.9.m.0.cv2.bn.running_mean", "model.9.m.0.cv2.bn.running_var", "model.10.conv.weight", "model.10.bn.weight", "model.10.bn.bias", "model.10.bn.running_mean", "model.10.bn.running_var", "model.13.cv1.conv.weight", "model.13.cv1.bn.weight", "model.13.cv1.bn.bias", "model.13.cv1.bn.running_mean", "model.13.cv1.bn.running_var", "model.13.cv2.weight", "model.13.cv3.weight", "model.13.cv4.conv.weight", "model.13.cv4.bn.weight", "model.13.cv4.bn.bias", "model.13.cv4.bn.running_mean", "model.13.cv4.bn.running_var", "model.13.bn.weight", "model.13.bn.bias", "model.13.bn.running_mean", "model.13.bn.running_var", "model.13.m.0.cv1.conv.weight", "model.13.m.0.cv1.bn.weight", "model.13.m.0.cv1.bn.bias", "model.13.m.0.cv1.bn.running_mean", "model.13.m.0.cv1.bn.running_var", "model.13.m.0.cv2.conv.weight", "model.13.m.0.cv2.bn.weight", "model.13.m.0.cv2.bn.bias", "model.13.m.0.cv2.bn.running_mean", "model.13.m.0.cv2.bn.running_var", "model.14.conv.weight", "model.14.bn.weight", "model.14.bn.bias", "model.14.bn.running_mean", "model.14.bn.running_var", "model.17.cv1.conv.weight", "model.17.cv1.bn.weight", "model.17.cv1.bn.bias", "model.17.cv1.bn.running_mean", "model.17.cv1.bn.running_var", "model.17.cv2.weight", "model.17.cv3.weight", "model.17.cv4.conv.weight", "model.17.cv4.bn.weight", "model.17.cv4.bn.bias", "model.17.cv4.bn.running_mean", "model.17.cv4.bn.running_var", "model.17.bn.weight", "model.17.bn.bias", "model.17.bn.running_mean", "model.17.bn.running_var", "model.17.m.0.cv1.conv.weight", "model.17.m.0.cv1.bn.weight", "model.17.m.0.cv1.bn.bias", "model.17.m.0.cv1.bn.running_mean", "model.17.m.0.cv1.bn.running_var", "model.17.m.0.cv2.conv.weight", "model.17.m.0.cv2.bn.weight", "model.17.m.0.cv2.bn.bias", "model.17.m.0.cv2.bn.running_mean", "model.17.m.0.cv2.bn.running_var", "model.18.conv.weight", "model.18.bn.weight", "model.18.bn.bias", "model.18.bn.running_mean", "model.18.bn.running_var", "model.20.cv1.conv.weight", "model.20.cv1.bn.weight", "model.20.cv1.bn.bias", "model.20.cv1.bn.running_mean", "model.20.cv1.bn.running_var", "model.20.cv2.weight", "model.20.cv3.weight", "model.20.cv4.conv.weight", "model.20.cv4.bn.weight", "model.20.cv4.bn.bias", "model.20.cv4.bn.running_mean", "model.20.cv4.bn.running_var", "model.20.bn.weight", "model.20.bn.bias", "model.20.bn.running_mean", "model.20.bn.running_var", "model.20.m.0.cv1.conv.weight", "model.20.m.0.cv1.bn.weight", "model.20.m.0.cv1.bn.bias", "model.20.m.0.cv1.bn.running_mean", "model.20.m.0.cv1.bn.running_var", "model.20.m.0.cv2.conv.weight", "model.20.m.0.cv2.bn.weight", "model.20.m.0.cv2.bn.bias", "model.20.m.0.cv2.bn.running_mean", "model.20.m.0.cv2.bn.running_var", "model.21.conv.weight", "model.21.bn.weight", "model.21.bn.bias", "model.21.bn.running_mean", "model.21.bn.running_var", "model.23.cv1.conv.weight", "model.23.cv1.bn.weight", "model.23.cv1.bn.bias", "model.23.cv1.bn.running_mean", "model.23.cv1.bn.running_var", "model.23.cv2.weight", "model.23.cv3.weight", "model.23.cv4.conv.weight", "model.23.cv4.bn.weight", "model.23.cv4.bn.bias", "model.23.cv4.bn.running_mean", "model.23.cv4.bn.running_var", "model.23.bn.weight", "model.23.bn.bias", "model.23.bn.running_mean", "model.23.bn.running_var", "model.23.m.0.cv1.conv.weight", "model.23.m.0.cv1.bn.weight", "model.23.m.0.cv1.bn.bias", "model.23.m.0.cv1.bn.running_mean", "model.23.m.0.cv1.bn.running_var", "model.23.m.0.cv2.conv.weight", "model.23.m.0.cv2.bn.weight", "model.23.m.0.cv2.bn.bias", "model.23.m.0.cv2.bn.running_mean", "model.23.m.0.cv2.bn.running_var", "model.24.anchors", "model.24.anchor_grid", "model.24.m.0.weight", "model.24.m.0.bias", "model.24.m.1.weight", "model.24.m.1.bias", "model.24.m.2.weight", "model.24.m.2.bias", "model.24.bn.0.weight", "model.24.bn.0.bias", "model.24.bn.0.running_mean", "model.24.bn.0.running_var", "model.24.bn.1.weight", "model.24.bn.1.bias", "model.24.bn.1.running_mean", "model.24.bn.1.running_var", "model.24.bn.2.weight", "model.24.bn.2.bias", "model.24.bn.2.running_mean", "model.24.bn.2.running_var", "model.24.convlstm1.cell_list.0.conv.weight", "model.24.convlstm1.cell_list.0.conv.bias", "model.24.convlstm2.cell_list.0.conv.weight", "model.24.convlstm2.cell_list.0.conv.bias", "model.24.convlstm3.cell_list.0.conv.weight", "model.24.convlstm3.cell_list.0.conv.bias". Unexpected key(s) in state_dict: "module.model.0.conv.conv.weight", "module.model.0.conv.bn.weight", "module.model.0.conv.bn.bias", "module.model.0.conv.bn.running_mean", "module.model.0.conv.bn.running_var", "module.model.0.conv.bn.num_batches_tracked", "module.model.1.conv.weight", "module.model.1.bn.weight", "module.model.1.bn.bias", "module.model.1.bn.running_mean", "module.model.1.bn.running_var", "module.model.1.bn.num_batches_tracked", "module.model.2.cv1.conv.weight", "module.model.2.cv1.bn.weight", "module.model.2.cv1.bn.bias", "module.model.2.cv1.bn.running_mean", "module.model.2.cv1.bn.running_var", "module.model.2.cv1.bn.num_batches_tracked", "module.model.2.cv2.weight", "module.model.2.cv3.weight", "module.model.2.cv4.conv.weight", "module.model.2.cv4.bn.weight", "module.model.2.cv4.bn.bias", "module.model.2.cv4.bn.running_mean", "module.model.2.cv4.bn.running_var", "module.model.2.cv4.bn.num_batches_tracked", "module.model.2.bn.weight", "module.model.2.bn.bias", "module.model.2.bn.running_mean", "module.model.2.bn.running_var", "module.model.2.bn.num_batches_tracked", "module.model.2.m.0.cv1.conv.weight", "module.model.2.m.0.cv1.bn.weight", "module.model.2.m.0.cv1.bn.bias", "module.model.2.m.0.cv1.bn.running_mean", "module.model.2.m.0.cv1.bn.running_var", "module.model.2.m.0.cv1.bn.num_batches_tracked", "module.model.2.m.0.cv2.conv.weight", "module.model.2.m.0.cv2.bn.weight", "module.model.2.m.0.cv2.bn.bias", "module.model.2.m.0.cv2.bn.running_mean", "module.model.2.m.0.cv2.bn.running_var", "module.model.2.m.0.cv2.bn.num_batches_tracked", "module.model.3.conv.weight", "module.model.3.bn.weight", "module.model.3.bn.bias", "module.model.3.bn.running_mean", "module.model.3.bn.running_var", "module.model.3.bn.num_batches_tracked", "module.model.4.cv1.conv.weight", "module.model.4.cv1.bn.weight", "module.model.4.cv1.bn.bias", "module.model.4.cv1.bn.running_mean", "module.model.4.cv1.bn.running_var", "module.model.4.cv1.bn.num_batches_tracked", "module.model.4.cv2.weight", "module.model.4.cv3.weight", "module.model.4.cv4.conv.weight", "module.model.4.cv4.bn.weight", "module.model.4.cv4.bn.bias", "module.model.4.cv4.bn.running_mean", "module.model.4.cv4.bn.running_var", "module.model.4.cv4.bn.num_batches_tracked", "module.model.4.bn.weight", "module.model.4.bn.bias", "module.model.4.bn.running_mean", "module.model.4.bn.running_var", "module.model.4.bn.num_batches_tracked", "module.model.4.m.0.cv1.conv.weight", "module.model.4.m.0.cv1.bn.weight", "module.model.4.m.0.cv1.bn.bias", "module.model.4.m.0.cv1.bn.running_mean", "module.model.4.m.0.cv1.bn.running_var", "module.model.4.m.0.cv1.bn.num_batches_tracked", "module.model.4.m.0.cv2.conv.weight", "module.model.4.m.0.cv2.bn.weight", "module.model.4.m.0.cv2.bn.bias", "module.model.4.m.0.cv2.bn.running_mean", "module.model.4.m.0.cv2.bn.running_var", "module.model.4.m.0.cv2.bn.num_batches_tracked", "module.model.4.m.1.cv1.conv.weight", "module.model.4.m.1.cv1.bn.weight", "module.model.4.m.1.cv1.bn.bias", "module.model.4.m.1.cv1.bn.running_mean", "module.model.4.m.1.cv1.bn.running_var", "module.model.4.m.1.cv1.bn.num_batches_tracked", "module.model.4.m.1.cv2.conv.weight", "module.model.4.m.1.cv2.bn.weight", "module.model.4.m.1.cv2.bn.bias", "module.model.4.m.1.cv2.bn.running_mean", "module.model.4.m.1.cv2.bn.running_var", "module.model.4.m.1.cv2.bn.num_batches_tracked", "module.model.4.m.2.cv1.conv.weight", "module.model.4.m.2.cv1.bn.weight", "module.model.4.m.2.cv1.bn.bias", "module.model.4.m.2.cv1.bn.running_mean", "module.model.4.m.2.cv1.bn.running_var", "module.model.4.m.2.cv1.bn.num_batches_tracked", "module.model.4.m.2.cv2.conv.weight", "module.model.4.m.2.cv2.bn.weight", "module.model.4.m.2.cv2.bn.bias", "module.model.4.m.2.cv2.bn.running_mean", "module.model.4.m.2.cv2.bn.running_var", "module.model.4.m.2.cv2.bn.num_batches_tracked", "module.model.5.conv.weight", "module.model.5.bn.weight", "module.model.5.bn.bias", "module.model.5.bn.running_mean", "module.model.5.bn.running_var", "module.model.5.bn.num_batches_tracked", "module.model.6.cv1.conv.weight", "module.model.6.cv1.bn.weight", "module.model.6.cv1.bn.bias", "module.model.6.cv1.bn.running_mean", "module.model.6.cv1.bn.running_var", "module.model.6.cv1.bn.num_batches_tracked", "module.model.6.cv2.weight", "module.model.6.cv3.weight", "module.model.6.cv4.conv.weight", "module.model.6.cv4.bn.weight", "module.model.6.cv4.bn.bias", "module.model.6.cv4.bn.running_mean", "module.model.6.cv4.bn.running_var", "module.model.6.cv4.bn.num_batches_tracked", "module.model.6.bn.weight", "module.model.6.bn.bias", "module.model.6.bn.running_mean", "module.model.6.bn.running_var", "module.model.6.bn.num_batches_tracked", "module.model.6.m.0.cv1.conv.weight", "module.model.6.m.0.cv1.bn.weight", "module.model.6.m.0.cv1.bn.bias", "module.model.6.m.0.cv1.bn.running_mean", "module.model.6.m.0.cv1.bn.running_var", "module.model.6.m.0.cv1.bn.num_batches_tracked", "module.model.6.m.0.cv2.conv.weight", "module.model.6.m.0.cv2.bn.weight", "module.model.6.m.0.cv2.bn.bias", "module.model.6.m.0.cv2.bn.running_mean", "module.model.6.m.0.cv2.bn.running_var", "module.model.6.m.0.cv2.bn.num_batches_tracked", "module.model.6.m.1.cv1.conv.weight", "module.model.6.m.1.cv1.bn.weight", "module.model.6.m.1.cv1.bn.bias", "module.model.6.m.1.cv1.bn.running_mean", "module.model.6.m.1.cv1.bn.running_var", "module.model.6.m.1.cv1.bn.num_batches_tracked", "module.model.6.m.1.cv2.conv.weight", "module.model.6.m.1.cv2.bn.weight", "module.model.6.m.1.cv2.bn.bias", "module.model.6.m.1.cv2.bn.running_mean", "module.model.6.m.1.cv2.bn.running_var", "module.model.6.m.1.cv2.bn.num_batches_tracked", "module.model.6.m.2.cv1.conv.weight", "module.model.6.m.2.cv1.bn.weight", "module.model.6.m.2.cv1.bn.bias", "module.model.6.m.2.cv1.bn.running_mean", "module.model.6.m.2.cv1.bn.running_var", "module.model.6.m.2.cv1.bn.num_batches_tracked", "module.model.6.m.2.cv2.conv.weight", "module.model.6.m.2.cv2.bn.weight", "module.model.6.m.2.cv2.bn.bias", "module.model.6.m.2.cv2.bn.running_mean", "module.model.6.m.2.cv2.bn.running_var", "module.model.6.m.2.cv2.bn.num_batches_tracked", "module.model.7.conv.weight", "module.model.7.bn.weight", "module.model.7.bn.bias", "module.model.7.bn.running_mean", "module.model.7.bn.running_var", "module.model.7.bn.num_batches_tracked", "module.model.8.cv1.conv.weight", "module.model.8.cv1.bn.weight", "module.model.8.cv1.bn.bias", "module.model.8.cv1.bn.running_mean", "module.model.8.cv1.bn.running_var", "module.model.8.cv1.bn.num_batches_tracked", "module.model.8.cv2.conv.weight", "module.model.8.cv2.bn.weight", "module.model.8.cv2.bn.bias", "module.model.8.cv2.bn.running_mean", "module.model.8.cv2.bn.running_var", "module.model.8.cv2.bn.num_batches_tracked", "module.model.9.cv1.conv.weight", "module.model.9.cv1.bn.weight", "module.model.9.cv1.bn.bias", "module.model.9.cv1.bn.running_mean", "module.model.9.cv1.bn.running_var", "module.model.9.cv1.bn.num_batches_tracked", "module.model.9.cv2.weight", "module.model.9.cv3.weight", "module.model.9.cv4.conv.weight", "module.model.9.cv4.bn.weight", "module.model.9.cv4.bn.bias", "module.model.9.cv4.bn.running_mean", "module.model.9.cv4.bn.running_var", "module.model.9.cv4.bn.num_batches_tracked", "module.model.9.bn.weight", "module.model.9.bn.bias", "module.model.9.bn.running_mean", "module.model.9.bn.running_var", "module.model.9.bn.num_batches_tracked", "module.model.9.m.0.cv1.conv.weight", "module.model.9.m.0.cv1.bn.weight", "module.model.9.m.0.cv1.bn.bias", "module.model.9.m.0.cv1.bn.running_mean", "module.model.9.m.0.cv1.bn.running_var", "module.model.9.m.0.cv1.bn.num_batches_tracked", "module.model.9.m.0.cv2.conv.weight", "module.model.9.m.0.cv2.bn.weight", "module.model.9.m.0.cv2.bn.bias", "module.model.9.m.0.cv2.bn.running_mean", "module.model.9.m.0.cv2.bn.running_var", "module.model.9.m.0.cv2.bn.num_batches_tracked", "module.model.10.conv.weight", "module.model.10.bn.weight", "module.model.10.bn.bias", "module.model.10.bn.running_mean", "module.model.10.bn.running_var", "module.model.10.bn.num_batches_tracked", "module.model.13.cv1.conv.weight", "module.model.13.cv1.bn.weight", "module.model.13.cv1.bn.bias", "module.model.13.cv1.bn.running_mean", "module.model.13.cv1.bn.running_var", "module.model.13.cv1.bn.num_batches_tracked", "module.model.13.cv2.weight", "module.model.13.cv3.weight", "module.model.13.cv4.conv.weight", "module.model.13.cv4.bn.weight", "module.model.13.cv4.bn.bias", "module.model.13.cv4.bn.running_mean", "module.model.13.cv4.bn.running_var", "module.model.13.cv4.bn.num_batches_tracked", "module.model.13.bn.weight", "module.model.13.bn.bias", "module.model.13.bn.running_mean", "module.model.13.bn.running_var", "module.model.13.bn.num_batches_tracked", "module.model.13.m.0.cv1.conv.weight", "module.model.13.m.0.cv1.bn.weight", "module.model.13.m.0.cv1.bn.bias", "module.model.13.m.0.cv1.bn.running_mean", "module.model.13.m.0.cv1.bn.running_var", "module.model.13.m.0.cv1.bn.num_batches_tracked", "module.model.13.m.0.cv2.conv.weight", "module.model.13.m.0.cv2.bn.weight", "module.model.13.m.0.cv2.bn.bias", "module.model.13.m.0.cv2.bn.running_mean", "module.model.13.m.0.cv2.bn.running_var", "module.model.13.m.0.cv2.bn.num_batches_tracked", "module.model.14.conv.weight", "module.model.14.bn.weight", "module.model.14.bn.bias", "module.model.14.bn.running_mean", "module.model.14.bn.running_var", "module.model.14.bn.num_batches_tracked", "module.model.17.cv1.conv.weight", "module.model.17.cv1.bn.weight", "module.model.17.cv1.bn.bias", "module.model.17.cv1.bn.running_mean", "module.model.17.cv1.bn.running_var", "module.model.17.cv1.bn.num_batches_tracked", "module.model.17.cv2.weight", "module.model.17.cv3.weight", "module.model.17.cv4.conv.weight", "module.model.17.cv4.bn.weight", "module.model.17.cv4.bn.bias", "module.model.17.cv4.bn.running_mean", "module.model.17.cv4.bn.running_var", "module.model.17.cv4.bn.num_batches_tracked", "module.model.17.bn.weight", "module.model.17.bn.bias", "module.model.17.bn.running_mean", "module.model.17.bn.running_var", "module.model.17.bn.num_batches_tracked", "module.model.17.m.0.cv1.conv.weight", "module.model.17.m.0.cv1.bn.weight", "module.model.17.m.0.cv1.bn.bias", "module.model.17.m.0.cv1.bn.running_mean", "module.model.17.m.0.cv1.bn.running_var", "module.model.17.m.0.cv1.bn.num_batches_tracked", "module.model.17.m.0.cv2.conv.weight", "module.model.17.m.0.cv2.bn.weight", "module.model.17.m.0.cv2.bn.bias", "module.model.17.m.0.cv2.bn.running_mean", "module.model.17.m.0.cv2.bn.running_var", "module.model.17.m.0.cv2.bn.num_batches_tracked", "module.model.18.conv.weight", "module.model.18.bn.weight", "module.model.18.bn.bias", "module.model.18.bn.running_mean", "module.model.18.bn.running_var", "module.model.18.bn.num_batches_tracked", "module.model.20.cv1.conv.weight", "module.model.20.cv1.bn.weight", "module.model.20.cv1.bn.bias", "module.model.20.cv1.bn.running_mean", "module.model.20.cv1.bn.running_var", "module.model.20.cv1.bn.num_batches_tracked", "module.model.20.cv2.weight", "module.model.20.cv3.weight", "module.model.20.cv4.conv.weight", "module.model.20.cv4.bn.weight", "module.model.20.cv4.bn.bias", "module.model.20.cv4.bn.running_mean", "module.model.20.cv4.bn.running_var", "module.model.20.cv4.bn.num_batches_tracked", "module.model.20.bn.weight", "module.model.20.bn.bias", "module.model.20.bn.running_mean", "module.model.20.bn.running_var", "module.model.20.bn.num_batches_tracked", "module.model.20.m.0.cv1.conv.weight", "module.model.20.m.0.cv1.bn.weight", "module.model.20.m.0.cv1.bn.bias", "module.model.20.m.0.cv1.bn.running_mean", "module.model.20.m.0.cv1.bn.running_var", "module.model.20.m.0.cv1.bn.num_batches_tracked", "module.model.20.m.0.cv2.conv.weight", "module.model.20.m.0.cv2.bn.weight", "module.model.20.m.0.cv2.bn.bias", "module.model.20.m.0.cv2.bn.running_mean", "module.model.20.m.0.cv2.bn.running_var", "module.model.20.m.0.cv2.bn.num_batches_tracked", "module.model.21.conv.weight", "module.model.21.bn.weight", "module.model.21.bn.bias", "module.model.21.bn.running_mean", "module.model.21.bn.running_var", "module.model.21.bn.num_batches_tracked", "module.model.23.cv1.conv.weight", "module.model.23.cv1.bn.weight", "module.model.23.cv1.bn.bias", "module.model.23.cv1.bn.running_mean", "module.model.23.cv1.bn.running_var", "module.model.23.cv1.bn.num_batches_tracked", "module.model.23.cv2.weight", "module.model.23.cv3.weight", "module.model.23.cv4.conv.weight", "module.model.23.cv4.bn.weight", "module.model.23.cv4.bn.bias", "module.model.23.cv4.bn.running_mean", "module.model.23.cv4.bn.running_var", "module.model.23.cv4.bn.num_batches_tracked", "module.model.23.bn.weight", "module.model.23.bn.bias", "module.model.23.bn.running_mean", "module.model.23.bn.running_var", "module.model.23.bn.num_batches_tracked", "module.model.23.m.0.cv1.conv.weight", "module.model.23.m.0.cv1.bn.weight", "module.model.23.m.0.cv1.bn.bias", "module.model.23.m.0.cv1.bn.running_mean", "module.model.23.m.0.cv1.bn.running_var", "module.model.23.m.0.cv1.bn.num_batches_tracked", "module.model.23.m.0.cv2.conv.weight", "module.model.23.m.0.cv2.bn.weight", "module.model.23.m.0.cv2.bn.bias", "module.model.23.m.0.cv2.bn.running_mean", "module.model.23.m.0.cv2.bn.running_var", "module.model.23.m.0.cv2.bn.num_batches_tracked", "module.model.24.anchors", "module.model.24.anchor_grid", "module.model.24.m.0.weight", "module.model.24.m.0.bias", "module.model.24.m.1.weight", "module.model.24.m.1.bias", "module.model.24.m.2.weight", "module.model.24.m.2.bias", "module.model.24.bn.0.weight", "module.model.24.bn.0.bias", "module.model.24.bn.0.running_mean", "module.model.24.bn.0.running_var", "module.model.24.bn.0.num_batches_tracked", "module.model.24.bn.1.weight", "module.model.24.bn.1.bias", "module.model.24.bn.1.running_mean", "module.model.24.bn.1.running_var", "module.model.24.bn.1.num_batches_tracked", "module.model.24.bn.2.weight", "module.model.24.bn.2.bias", "module.model.24.bn.2.running_mean", "module.model.24.bn.2.running_var", "module.model.24.bn.2.num_batches_tracked", "module.model.24.convlstm1.cell_list.0.conv.weight", "module.model.24.convlstm1.cell_list.0.conv.bias", "module.model.24.convlstm2.cell_list.0.conv.weight", "module.model.24.convlstm2.cell_list.0.conv.bias", "module.model.24.convlstm3.cell_list.0.conv.weight", "module.model.24.convlstm3.cell_list.0.conv.bias". can modify load_state_dict(state_dict) to model.load_state_dict(state_dict, False) to solve this problem?

    opened by wch243294382 0
Owner
Mario Duran-Vega
Mario Duran-Vega
TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-Captured Scenarios

TPH-YOLOv5 This repo is the implementation of "TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-Captured

cv516Buaa 439 Dec 22, 2022
Multi-task yolov5 with detection and segmentation based on yolov5

YOLOv5DS Multi-task yolov5 with detection and segmentation based on yolov5(branch v6.0) decoupled head anchor free segmentation head README中文 Ablation

null 150 Dec 30, 2022
Implementation of Bidirectional Recurrent Independent Mechanisms (Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neural Networks with Attention over Modules)

BRIMs Bidirectional Recurrent Independent Mechanisms Implementation of the paper Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neura

Sarthak Mittal 26 May 26, 2022
Video lie detector using xgboost - A video lie detector using OpenFace and xgboost

video_lie_detector_using_xgboost a video lie detector using OpenFace and xgboost

null 2 Jan 11, 2022
TCNN Temporal convolutional neural network for real-time speech enhancement in the time domain

TCNN Pandey A, Wang D L. TCNN: Temporal convolutional neural network for real-time speech enhancement in the time domain[C]//ICASSP 2019-2019 IEEE Int

凌逆战 16 Dec 30, 2022
🍅🍅🍅YOLOv5-Lite: lighter, faster and easier to deploy. Evolved from yolov5 and the size of model is only 1.7M (int8) and 3.3M (fp16). It can reach 10+ FPS on the Raspberry Pi 4B when the input size is 320×320~

YOLOv5-Lite:lighter, faster and easier to deploy Perform a series of ablation experiments on yolov5 to make it lighter (smaller Flops, lower memory, a

pogg 1.5k Jan 5, 2023
Yolov5-lite - Minimal PyTorch implementation of YOLOv5

Yolov5-Lite: Minimal YOLOv5 + Deep Sort Overview This repo is a shortened versio

Kadir Nar 57 Nov 28, 2022
A real world application of a Recurrent Neural Network on a binary classification of time series data

What is this This is a real world application of a Recurrent Neural Network on a binary classification of time series data. This project includes data

Josep Maria Salvia Hornos 2 Jan 30, 2022
Unofficial implementation of "TTNet: Real-time temporal and spatial video analysis of table tennis" (CVPR 2020)

TTNet-Pytorch The implementation for the paper "TTNet: Real-time temporal and spatial video analysis of table tennis" An introduction of the project c

Nguyen Mau Dung 438 Dec 29, 2022
Playing around with FastAPI and streamlit to create a YoloV5 object detector

FastAPI-Streamlit-based-YoloV5-detector Playing around with FastAPI and streamlit to create a YoloV5 object detector It turns out that a User Interfac

null 2 Jan 20, 2022
Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Zhengzhong Tu 5 Sep 16, 2022
Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity

This repository is the official PyTorch implementation of Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity

hippopmonkey 4 Dec 11, 2022
Official implementation of Monocular Quasi-Dense 3D Object Tracking

Monocular Quasi-Dense 3D Object Tracking Monocular Quasi-Dense 3D Object Tracking (QD-3DT) is an online framework detects and tracks objects in 3D usi

Visual Intelligence and Systems Group 441 Dec 20, 2022
Quasi-Dense Similarity Learning for Multiple Object Tracking, CVPR 2021 (Oral)

Quasi-Dense Tracking This is the offical implementation of paper Quasi-Dense Similarity Learning for Multiple Object Tracking. We present a trailer th

ETH VIS Research Group 327 Dec 27, 2022
A python package simulating the quasi-2D pseudospin-1/2 Gross-Pitaevskii equation with NVIDIA GPU acceleration.

A python package simulating the quasi-2D pseudospin-1/2 Gross-Pitaevskii equation with NVIDIA GPU acceleration. Introduction spinor-gpe is high-level,

null 2 Sep 20, 2022
Real-Time-Student-Attendence-System - Real Time Student Attendence System

Real-Time-Student-Attendence-System The Student Attendance Management System Pro

Rounak Das 1 Feb 15, 2022
Pytorch implementation of "Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling"

RNN-for-Joint-NLU Pytorch implementation of "Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling"

Kim SungDong 194 Dec 28, 2022
A whale detector design for the Kaggle whale-detector challenge!

CNN (InceptionV1) + STFT based Whale Detection Algorithm So, this repository is my PyTorch solution for the Kaggle whale-detection challenge. The obje

Tarin Ziyaee 92 Sep 28, 2021
Lane follower: Lane-detector (OpenCV) + Object-detector (YOLO5) + CAN-bus

Lane Follower This code is for the lane follower, including perception and control, as shown below. Environment Hardware Industrial Camera Intel-NUC(1

Siqi Fan 3 Jul 7, 2022