CDVD-TSPNL
Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity
By Jinshan Pan, Boming Xu, and Haoran Bai
This repository is the official PyTorch implementation of "Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity"
Updates
[2022-02-08] Training code and Testing code are available!
[2022-02-07] Paper coming soon...
Experimental Results
Quantitative evaluations on the video deblurring dataset [11] in terms of PSNR and SSIM. All the comparison results are generated using the publicly available code. All the restored frames instead of randomly selected 30 frames from each test set [11] are used for evaluations.
Quantitative evaluations on the GoPro dataset [43] in terms of PSNR and SSIM. * denotes the reported results from [47].
Quantitative evaluations on the BSD video deblurring dataset [5] in terms of PSNR and SSIM.
Dependencies
- Linux (Tested on Ubuntu 18.04)
- Python 3 (Recommend to use Anaconda)
- PyTorch 1.8.0:
conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cudatoolkit=10.2 -c pytorch
- Install dependent packages :
pip install -r requirements.txt
- Install CDVD-TSPNL :
python setup.py develop
Get Started
Pretrained models
- Models are available in
'./experiments/pretrained_models/'
Dataset Organization Form
If you prepare your own dataset, please follow the following form like GOPRO/DVD:
|--dataset
|--blur
|--video 1
|--frame 1
|--frame 2
:
|--video 2
:
|--video n
|--gt
|--video 1
|--frame 1
|--frame 2
:
|--video 2
:
|--video n
Training
- FlowNet pretrained model has been downloaded in
'./pretrained_models/flownet/'
- Download training dataset like above form.
- Run the following commands:
Single GPU
python basicsr/train.py -opt options/train/Deblur/train_Deblur_GOPRO.yml
Multi-GPUs
python -m torch.distributed.launch --nproc_per_node=8 --master_port=4321 basicsr/train.py -opt options/train/Deblur/train_Deblur_GOPRO.yml --launcher pytorch
Testing
- Model are available in
'./experiments/pretrained_models/'
- Organize your dataset(GOPRO/DVD/BSD) like the above form.
- Run the following commands:
python basicsr/test.py -opt options/test/Deblur/test_Deblur_GOPRO.yml
- The deblured result will be in './results/'.
- We calculate PSNRs/SSIMs following [Here]
- If we set
flip_seq: Ture
in config files, testing code will use self-ensemble strategy.(CDVDTSPNL+)