Repository accompanying the "Sign Pose-based Transformer for Word-level Sign Language Recognition" paper

Overview

Alt Text

by Matyáš Boháček and Marek Hrúz, University of West Bohemia
Should you have any questions or inquiries, feel free to contact us here.

PWC

Repository accompanying the Sign Pose-based Transformer for Word-level Sign Language Recognition paper, where we present a novel architecture for word-level sign language recognition based on the Transformer model. We designed our solution with low computational cost in mind, since we see egreat potential in the usage of such recognition system on hand-held devices. We introduce multiple original augmentation techniques tailored for the task of sign language recognition and propose a unique normalization scheme based on sign language linguistics.

Alt Text

Get Started

First, make sure to install all necessary dependencies using:

pip install -r requirements.txt

To train the model, simply specify the hyperparameters and run the following:

python -m train
  --experiment_name [str; name of the experiment to name the output logs and plots]
  
  --epochs [int; number of epochs]
  --lr [float; learning rate]
  
  --training_set_path [str; path to the csv file with training set's skeletal data]
  --validation_set_path [str; path to the csv file with validation set's skeletal data]
  --testing_set_path [str; path to the csv file with testing set's skeletal data]

If either the validation or testing sets' paths are left empty, these corresponding metrics will not be calculated. We also provide out-of-the box parameter to split the validation set as a desired split of the training set while preserving the label distribution for datasets without author-specified splits. These and many other specific hyperparameters with their descriptions can be found in the train.py file. All of them are provided a default value we found to be working well in our experiments.

Data

As SPOTER works on top of sequences of signers' skeletal data extracted from videos, we wanted to eliminate the computational demands of such annotation for each training run by pre-collecting this. For this reason and reproducibility, we are open-sourcing this data for WLASL100 and LSA64 datasets along with the repository. You can find the data here.

Alt Text

License

The code is published under the Apache License 2.0 which allows for both academic and commercial use if relevant License and copyright notice is included, our work is cited and all changes are stated.

The accompanying skeletal data of the WLASL and LSA64 datasets used for experiments are, however, shared under the Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license allowing only for non-commercial usage.

Citation

If you find our work relevant, build upon it or compare your approaches with it, please cite our work as stated below:

@InProceedings{Bohacek_2022_WACV,
    author    = {Boh\'a\v{c}ek, Maty\'a\v{s} and Hr\'uz, Marek},
    title     = {Sign Pose-Based Transformer for Word-Level Sign Language Recognition},
    booktitle = {Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) Workshops},
    month     = {January},
    year      = {2022},
    pages     = {182-191}
}
Comments
  • Pose based GRU model

    Pose based GRU model

    Thank you for providing this dataset. I'm trying to reproduce your results using the Pose based GRU model however I'm unable to do so. Could you please share the model architecture and hyperparameters. It would be quite helpful

    EDIT: Wrong repository, please delete this issue

    opened by farhaan-mukarram 0
  • Testing new data

    Testing new data

    I'm trying to use the model, but I'm having problems with the following step. I have already trained the model, and now I have the checkpoint_v_0.pth file, with which I do the following to load the generated model:

    model = torch.load(PATH/to/pth/file)
    print(model)
    

    And this returns something like:

    SPOTER(
      (transformer): Transformer(
        (encoder): TransformerEncoder(
          (layers): ModuleList(
            (0): TransformerEncoderLayer(
              (self_attn): MultiheadAttention(
                (out_proj): _LinearWithBias(in_features=108, out_features=108, bias=True)
              )
              (linear1): Linear(in_features=108, out_features=2048, bias=True)
              (dropout): Dropout(p=0.1, inplace=False)
              (linear2): Linear(in_features=2048, out_features=108, bias=True)
              (norm1): LayerNorm((108,), eps=1e-05, elementwise_affine=True)
              (norm2): LayerNorm((108,), eps=1e-05, elementwise_affine=True)
              (dropout1): Dropout(p=0.1, inplace=False)
              (dropout2): Dropout(p=0.1, inplace=False)
            )
            (1): TransformerEncoderLayer(
    ...
    

    which makes me believe that everything is OK to this point.

    Now I would like to see how I can use the model to make a prediction with new data, and there's where the problem is.

    When running model(input) to get the results, some errors appear, and I believe that I'm not giving the correct kind of input. I'm using the second line from WLASL100_train_25fps.csv, changing the "s for [s in order to get a hierarchy like the following:

    [
               [a, b, c],
               [d],
               [e, f]
    ]
    

    However, this doesn't seem to work. Am I using a different format to the one the model should be given?

    The exact input I'm giving the model follows, with the np.array conversion:

    parsed_example = [[0.398577,0.398577,0.398577,0,0,0,0.398577,0.398577,0.398577,0.398577,0.398577,0.398577,0.398577,0.398577,0.398577,0.398577,0.398577,0.398577,0.398577,0.398577,0.398577,0.398577,0.398577,0.398577,0.398577,0.398577,0.398577,0.398577,0.398577,0.398577,0.393627,0.398276,0.402398,0.400453,0.392099,0.389084,0.390115,0.390122,0.389504,0.389435,0.391493,0,0,0.404229,0,0.375582],[0.492837,0.492837,0.492837,0,0,0,0.492837,0.492837,0.492837,0.492837,0.492837,0.492837,0.492837,0.492837,0.492837,0.492837,0.492837,0.492837,0.492837,0.492837,0.492837,0.492837,0.492837,0.492837,0.492837,0.492837,0.492837,0.492837,0.492837,0.492837,0.493243,0.493652,0.493095,0.493131,0.489589,0.487246,0.482847,0.461756,0.449853,0.454416,0.470932,0,0,0,0,0],[0.528982,0.528982,0.528982,0,0,0,0.528982,0.528982,0.528982,0.528982,0.528982,0.528982,0.528982,0.528982,0.528982,0.528982,0.528982,0.528982,0.528982,0.528982,0.528982,0.528982,0.528982,0.528982,0.528982,0.528982,0.528982,0.528982,0.528982,0.528982,0.51803,0.497051,0.526573,0.514082,0.518499,0.509619,0.49415,0.472887,0.446121,0.418547,0.298164,0,0,0.0109521,0,0.132508],[0.471492,0.471492,0.471492,0,0,0,0.471492,0.471492,0.471492,0.471492,0.471492,0.471492,0.471492,0.471492,0.471492,0.471492,0.471492,0.471492,0.471492,0.471492,0.471492,0.471492,0.471492,0.471492,0.471492,0.471492,0.471492,0.471492,0.471492,0.471492,0.47169,0.471791,0.472173,0.471784,0.471199,0.468871,0.464683,0.457271,0.451461,0.444686,0.442517,0,0,0,0,0],[0.0485368,0.0485368,0.0485368,0,0,0,0.0485368,0.0485368,0.0485368,0.0485368,0.0485368,0.0485368,0.0485368,0.0485368,0.0485368,0.0485368,0.0485368,0.0485368,0.0485368,0.0485368,0.0485368,0.0485368,0.0485368,0.0485368,0.0485368,0.0485368,0.0485368,0.0485368,0.0485368,0.0485368,0.0484803,0.0485052,0.0437046,0.0458512,0.0410389,0.0284424,0.0229825,0.0172411,0.0192034,0.0174977,0.0778546,0,0,0,0,0],[0.444718,0.444718,0.444718,0,0,0,0.444718,0.444718,0.444718,0.444718,0.444718,0.444718,0.444718,0.444718,0.444718,0.444718,0.444718,0.444718,0.444718,0.444718,0.444718,0.444718,0.444718,0.444718,0.444718,0.444718,0.444718,0.444718,0.444718,0.444718,0.410827,0.403959,0.461306,0.422898,0.468788,0.459742,0.435957,0.406939,0.3709,0.33533,0.238105,0,0,0,0,0.0313517],[0.595102,0.595102,0.595102,0,0,0,0.595102,0.595102,0.595102,0.595102,0.595102,0.595102,0.595102,0.595102,0.595102,0.595102,0.595102,0.595102,0.595102,0.595102,0.595102,0.595102,0.595102,0.595102,0.595102,0.595102,0.595102,0.595102,0.595102,0.595102,0.555913,0.551131,0.624477,0.588528,0.650886,0.647908,0.627087,0.602364,0.573864,0.529823,0.44072,0,0,0.0573245,0,0.169048],[0.171264,0.171264,0.171264,0,0,0,0.171264,0.171264,0.171264,0.171264,0.171264,0.171264,0.171264,0.171264,0.171264,0.171264,0.171264,0.171264,0.171264,0.171264,0.171264,0.171264,0.171264,0.171264,0.171264,0.171264,0.171264,0.171264,0.171264,0.171264,0.171651,0.173042,0.170316,0.171098,0.165272,0.156861,0.150788,0.145757,0.128707,0.110712,0.070122,0,0,0,0,0],[0.473231,0.473231,0.473231,0,0,0,0.473231,0.473231,0.473231,0.473231,0.473231,0.473231,0.473231,0.473231,0.473231,0.473231,0.473231,0.473231,0.473231,0.473231,0.473231,0.473231,0.473231,0.473231,0.473231,0.473231,0.473231,0.473231,0.473231,0.473231,0.45867,0.453409,0.493301,0.457943,0.478756,0.466767,0.4517,0.428147,0.40929,0.380941,0.318115,0,0,0.134512,0,0.16755],[0.536177,0.536177,0.536177,0,0,0,0.536177,0.536177,0.536177,0.536177,0.536177,0.536177,0.536177,0.536177,0.536177,0.536177,0.536177,0.536177,0.536177,0.536177,0.536177,0.536177,0.536177,0.536177,0.536177,0.536177,0.536177,0.536177,0.536177,0.536177,0.517749,0.51461,0.529266,0.574933,0.532947,0.521931,0.502335,0.482224,0.459312,0.427157,0.32395,0,0,0.0160242,0,0.185826],[0.407958,0.407958,0.407958,0,0,0,0.407958,0.407958,0.407958,0.407958,0.407958,0.407958,0.407958,0.407958,0.407958,0.407958,0.407958,0.407958,0.407958,0.407958,0.407958,0.407958,0.407958,0.407958,0.407958,0.407958,0.407958,0.407958,0.407958,0.407958,0.409048,0.409384,0.408326,0.408705,0.407319,0.405705,0.402739,0.395891,0.385984,0.3856,0.432976,0,0,0,0,0],[0.077801,0.077801,0.077801,0.0807571,0.0807571,0.0807571,0.077801,0.077801,0.077801,0.077801,0.077801,0.077801,0.077801,0.077801,0.077801,0.077801,0.077801,0.077801,0.077801,0.077801,0.077801,0.077801,0.077801,0.077801,0.077801,0.077801,0.077801,0.077801,0.077801,0.077801,0.0762554,0.0732151,0.0731308,0.0731247,0.0724378,0.0797846,0.0793943,0.0781348,0.0832884,0.072022,0.0677893,0.0737613,0.0725894,0.0822043,0.0762998,0.0776332],[0.422698,0.422698,0.422698,0,0,0,0.422698,0.422698,0.422698,0.422698,0.422698,0.422698,0.422698,0.422698,0.422698,0.422698,0.422698,0.422698,0.422698,0.422698,0.422698,0.422698,0.422698,0.422698,0.422698,0.422698,0.422698,0.422698,0.422698,0.422698,0.430718,0.440697,0.419992,0.431422,0.406726,0.40075,0.401792,0.405708,0.405919,0.404651,0.395599,0,0,0,0,0.402912],360,[0.556073,0.556073,0.556073,0,0,0,0.556073,0.556073,0.556073,0.556073,0.556073,0.556073,0.556073,0.556073,0.556073,0.556073,0.556073,0.556073,0.556073,0.556073,0.556073,0.556073,0.556073,0.556073,0.556073,0.556073,0.556073,0.556073,0.556073,0.556073,0.536601,0.530958,0.55007,0.569923,0.549784,0.538729,0.52079,0.500619,0.477842,0.446324,0.330212,0,0,0.0192175,0,0.186272],[0.397988,0.397988,0.397988,0,0,0,0.397988,0.397988,0.397988,0.397988,0.397988,0.397988,0.397988,0.397988,0.397988,0.397988,0.397988,0.397988,0.397988,0.397988,0.397988,0.397988,0.397988,0.397988,0.397988,0.397988,0.397988,0.397988,0.397988,0.397988,0.388859,0.386205,0.396229,0.380661,0.403792,0.401147,0.377418,0.346069,0.317356,0.289145,0.204902,0,0,0.0614293,0,0.119065],[0.417861,0.417861,0.417861,0.439912,0.439912,0.439912,0.417861,0.417861,0.417861,0.417861,0.417861,0.417861,0.417861,0.417861,0.417861,0.417861,0.417861,0.417861,0.417861,0.417861,0.417861,0.417861,0.417861,0.417861,0.417861,0.417861,0.417861,0.417861,0.417861,0.417861,0.417895,0.418117,0.418545,0.4183,0.419513,0.418768,0.420636,0.422949,0.424417,0.425064,0.427494,0.428411,0.428882,0.432829,0.438765,0.430258],[0.392557,0.392557,0.392557,0,0,0,0.392557,0.392557,0.392557,0.392557,0.392557,0.392557,0.392557,0.392557,0.392557,0.392557,0.392557,0.392557,0.392557,0.392557,0.392557,0.392557,0.392557,0.392557,0.392557,0.392557,0.392557,0.392557,0.392557,0.392557,0.393167,0.393362,0.392457,0.393228,0.391265,0.388041,0.384542,0.381818,0.375773,0.375523,0.419973,0,0,0,0,0],[0.559241,0.559241,0.559241,0,0,0,0.559241,0.559241,0.559241,0.559241,0.559241,0.559241,0.559241,0.559241,0.559241,0.559241,0.559241,0.559241,0.559241,0.559241,0.559241,0.559241,0.559241,0.559241,0.559241,0.559241,0.559241,0.559241,0.559241,0.559241,0.558091,0.557011,0.557938,0.557323,0.55621,0.556297,0.553147,0.548757,0.536598,0.533963,0.400428,0,0,0,0,0],[0.868213,0.868213,0.868213,0.866513,0.866513,0.866513,0.868213,0.868213,0.868213,0.868213,0.868213,0.868213,0.868213,0.868213,0.868213,0.868213,0.868213,0.868213,0.868213,0.868213,0.868213,0.868213,0.868213,0.868213,0.868213,0.868213,0.868213,0.868213,0.868213,0.868213,0.868191,0.868267,0.867593,0.868017,0.867536,0.865815,0.865587,0.866913,0.866851,0.866919,0.866125,0.864815,0.859497,0.851707,0.846945,0.855105],[0.498047,0.498047,0.498047,0.485291,0.485291,0.485291,0.498047,0.498047,0.498047,0.498047,0.498047,0.498047,0.498047,0.498047,0.498047,0.498047,0.498047,0.498047,0.498047,0.498047,0.498047,0.498047,0.498047,0.498047,0.498047,0.498047,0.498047,0.498047,0.498047,0.498047,0.50619,0.497473,0.49691,0.496445,0.495318,0.495816,0.497309,0.500691,0.500798,0.495025,0.489368,0.486047,0.483157,0.477592,0.475032,0.480784],[0.0266556,0.0266556,0.0266556,0,0,0,0.0266556,0.0266556,0.0266556,0.0266556,0.0266556,0.0266556,0.0266556,0.0266556,0.0266556,0.0266556,0.0266556,0.0266556,0.0266556,0.0266556,0.0266556,0.0266556,0.0266556,0.0266556,0.0266556,0.0266556,0.0266556,0.0266556,0.0266556,0.0266556,0.0267041,0.0261174,0.0241547,0.0247721,0.0226099,0.01849,0.0169849,0.0164648,0.020179,0.0184484,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0.418166,0.418166,0.418166,0,0,0,0.418166,0.418166,0.418166,0.418166,0.418166,0.418166,0.418166,0.418166,0.418166,0.418166,0.418166,0.418166,0.418166,0.418166,0.418166,0.418166,0.418166,0.418166,0.418166,0.418166,0.418166,0.418166,0.418166,0.418166,0.426177,0.437865,0.416506,0.430483,0.401749,0.395495,0.397367,0.400526,0.402528,0.402191,0.416395,0,0,0.421347,0,0.364901],[0.510201,0.510201,0.510201,0,0,0,0.510201,0.510201,0.510201,0.510201,0.510201,0.510201,0.510201,0.510201,0.510201,0.510201,0.510201,0.510201,0.510201,0.510201,0.510201,0.510201,0.510201,0.510201,0.510201,0.510201,0.510201,0.510201,0.510201,0.510201,0.483359,0.472029,0.47806,0.504377,0.473304,0.466987,0.44647,0.425754,0.398267,0.372791,0.26556,0,0,0,0,0.0290775],[0.393632,0.393632,0.393632,0,0,0,0.393632,0.393632,0.393632,0.393632,0.393632,0.393632,0.393632,0.393632,0.393632,0.393632,0.393632,0.393632,0.393632,0.393632,0.393632,0.393632,0.393632,0.393632,0.393632,0.393632,0.393632,0.393632,0.393632,0.393632,0.394368,0.394109,0.393648,0.39417,0.392089,0.388192,0.385397,0.380724,0.376536,0.373512,0.510908,0,0,0,0,0],[0.514143,0.514143,0.514143,0,0,0,0.514143,0.514143,0.514143,0.514143,0.514143,0.514143,0.514143,0.514143,0.514143,0.514143,0.514143,0.514143,0.514143,0.514143,0.514143,0.514143,0.514143,0.514143,0.514143,0.514143,0.514143,0.514143,0.514143,0.514143,0.488864,0.478717,0.499149,0.490987,0.487244,0.47975,0.463163,0.442731,0.411967,0.38342,0.262672,0,0,0,0,0.029516],[0.14742,0.14742,0.14742,0,0,0,0.14742,0.14742,0.14742,0.14742,0.14742,0.14742,0.14742,0.14742,0.14742,0.14742,0.14742,0.14742,0.14742,0.14742,0.14742,0.14742,0.14742,0.14742,0.14742,0.14742,0.14742,0.14742,0.14742,0.14742,0.147526,0.148093,0.143568,0.145532,0.137696,0.122592,0.113845,0.095867,0.0645544,0.0335655,0.181972,0,0,0,0,0],[0.160598,0.160598,0.160598,0,0,0,0.160598,0.160598,0.160598,0.160598,0.160598,0.160598,0.160598,0.160598,0.160598,0.160598,0.160598,0.160598,0.160598,0.160598,0.160598,0.160598,0.160598,0.160598,0.160598,0.160598,0.160598,0.160598,0.160598,0.160598,0.16084,0.161477,0.15815,0.159689,0.153363,0.14376,0.138518,0.120059,0.0925082,0.0678847,0.123008,0,0,0,0,0],[0.354376,0.354376,0.354376,0,0,0,0.354376,0.354376,0.354376,0.354376,0.354376,0.354376,0.354376,0.354376,0.354376,0.354376,0.354376,0.354376,0.354376,0.354376,0.354376,0.354376,0.354376,0.354376,0.354376,0.354376,0.354376,0.354376,0.354376,0.354376,0.355446,0.357547,0.356205,0.355636,0.346679,0.342398,0.341331,0.341753,0.339144,0.337713,0.333239,0,0,0.416292,0,0.370757],[0.420521,0.420521,0.420521,0,0,0,0.420521,0.420521,0.420521,0.420521,0.420521,0.420521,0.420521,0.420521,0.420521,0.420521,0.420521,0.420521,0.420521,0.420521,0.420521,0.420521,0.420521,0.420521,0.420521,0.420521,0.420521,0.420521,0.420521,0.420521,0.421522,0.421487,0.42075,0.421606,0.417578,0.413965,0.408728,0.403928,0.385775,0.397049,0,0,0,0,0,0],640,[0.541161,0.541161,0.541161,0,0,0,0.541161,0.541161,0.541161,0.541161,0.541161,0.541161,0.541161,0.541161,0.541161,0.541161,0.541161,0.541161,0.541161,0.541161,0.541161,0.541161,0.541161,0.541161,0.541161,0.541161,0.541161,0.541161,0.541161,0.541161,0.54111,0.540695,0.541796,0.540932,0.53986,0.539377,0.533142,0.524508,0.516081,0.512644,0.484296,0,0,0,0,0],[0.556609,0.556609,0.556609,0,0,0,0.556609,0.556609,0.556609,0.556609,0.556609,0.556609,0.556609,0.556609,0.556609,0.556609,0.556609,0.556609,0.556609,0.556609,0.556609,0.556609,0.556609,0.556609,0.556609,0.556609,0.556609,0.556609,0.556609,0.556609,0.540239,0.524339,0.561196,0.541111,0.561099,0.551605,0.534581,0.511972,0.485199,0.455068,0.340676,0,0,0.0149052,0,0.178714],[0.408994,0.408994,0.408994,0,0,0,0.408994,0.408994,0.408994,0.408994,0.408994,0.408994,0.408994,0.408994,0.408994,0.408994,0.408994,0.408994,0.408994,0.408994,0.408994,0.408994,0.408994,0.408994,0.408994,0.408994,0.408994,0.408994,0.408994,0.408994,0.410046,0.409876,0.409208,0.409532,0.408416,0.40626,0.404551,0.396929,0.388693,0.380822,0.492037,0,0,0,0,0],[0.501293,0.501293,0.501293,0,0,0,0.501293,0.501293,0.501293,0.501293,0.501293,0.501293,0.501293,0.501293,0.501293,0.501293,0.501293,0.501293,0.501293,0.501293,0.501293,0.501293,0.501293,0.501293,0.501293,0.501293,0.501293,0.501293,0.501293,0.501293,0.500814,0.500966,0.502335,0.501341,0.4978,0.496459,0.484296,0.466156,0.462022,0.462566,0.470642,0,0,0,0,0],[0.568233,0.568233,0.568233,0,0,0,0.568233,0.568233,0.568233,0.568233,0.568233,0.568233,0.568233,0.568233,0.568233,0.568233,0.568233,0.568233,0.568233,0.568233,0.568233,0.568233,0.568233,0.568233,0.568233,0.568233,0.568233,0.568233,0.568233,0.568233,0.534232,0.531382,0.633149,0.593982,0.662144,0.663524,0.646581,0.624724,0.596565,0.546316,0.426962,0,0,0.0220607,0,0.160657],[0.466392,0.466392,0.466392,0,0,0,0.466392,0.466392,0.466392,0.466392,0.466392,0.466392,0.466392,0.466392,0.466392,0.466392,0.466392,0.466392,0.466392,0.466392,0.466392,0.466392,0.466392,0.466392,0.466392,0.466392,0.466392,0.466392,0.466392,0.466392,0.426378,0.417419,0.498705,0.439079,0.504048,0.493154,0.475294,0.447406,0.417194,0.381258,0.290019,0,0,0,0,0.13123],[0.416737,0.416737,0.416737,0,0,0,0.416737,0.416737,0.416737,0.416737,0.416737,0.416737,0.416737,0.416737,0.416737,0.416737,0.416737,0.416737,0.416737,0.416737,0.416737,0.416737,0.416737,0.416737,0.416737,0.416737,0.416737,0.416737,0.416737,0.416737,0.417708,0.41797,0.416587,0.417454,0.413279,0.416709,0.412278,0.402862,0.396735,0.399356,0.435406,0,0,0,0,0],[0.505452,0.505452,0.505452,0,0,0,0.505452,0.505452,0.505452,0.505452,0.505452,0.505452,0.505452,0.505452,0.505452,0.505452,0.505452,0.505452,0.505452,0.505452,0.505452,0.505452,0.505452,0.505452,0.505452,0.505452,0.505452,0.505452,0.505452,0.505452,0.505407,0.505082,0.505261,0.505529,0.504117,0.501017,0.496164,0.489083,0.479575,0.473823,0.465006,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0.415748,0.415748,0.415748,0,0,0,0.415748,0.415748,0.415748,0.415748,0.415748,0.415748,0.415748,0.415748,0.415748,0.415748,0.415748,0.415748,0.415748,0.415748,0.415748,0.415748,0.415748,0.415748,0.415748,0.415748,0.415748,0.415748,0.415748,0.415748,0.413991,0.41782,0.425666,0.42046,0.419226,0.417096,0.416879,0.413618,0.409052,0.407485,0.401017,0,0,0,0,0.381397],[0.473815,0.473815,0.473815,0.473295,0.473295,0.473295,0.473815,0.473815,0.473815,0.473815,0.473815,0.473815,0.473815,0.473815,0.473815,0.473815,0.473815,0.473815,0.473815,0.473815,0.473815,0.473815,0.473815,0.473815,0.473815,0.473815,0.473815,0.473815,0.473815,0.473815,0.477564,0.47261,0.473035,0.472369,0.471813,0.472967,0.473136,0.473406,0.473849,0.470469,0.470649,0.470665,0.468623,0.472882,0.471804,0.470694],[0.834083,0.834083,0.834083,0.850918,0.850918,0.850918,0.834083,0.834083,0.834083,0.834083,0.834083,0.834083,0.834083,0.834083,0.834083,0.834083,0.834083,0.834083,0.834083,0.834083,0.834083,0.834083,0.834083,0.834083,0.834083,0.834083,0.834083,0.834083,0.834083,0.834083,0.833912,0.833459,0.832564,0.83294,0.832221,0.831697,0.831018,0.831089,0.831369,0.833802,0.842826,0.844824,0.847571,0.8431,0.837603,0.846742],[0.449698,0.449698,0.449698,0.470586,0.470586,0.470586,0.449698,0.449698,0.449698,0.449698,0.449698,0.449698,0.449698,0.449698,0.449698,0.449698,0.449698,0.449698,0.449698,0.449698,0.449698,0.449698,0.449698,0.449698,0.449698,0.449698,0.449698,0.449698,0.449698,0.449698,0.449782,0.449879,0.450069,0.450108,0.449954,0.449856,0.450556,0.451792,0.452467,0.453156,0.45535,0.457895,0.461187,0.464011,0.469523,0.462232],[0.335874,0.335874,0.335874,0.331081,0.331081,0.331081,0.335874,0.335874,0.335874,0.335874,0.335874,0.335874,0.335874,0.335874,0.335874,0.335874,0.335874,0.335874,0.335874,0.335874,0.335874,0.335874,0.335874,0.335874,0.335874,0.335874,0.335874,0.335874,0.335874,0.335874,0.341357,0.338583,0.340809,0.337994,0.338086,0.344122,0.345942,0.338647,0.337904,0.341081,0.336325,0.335902,0.333218,0.330601,0.329757,0.333555],[0.59528,0.59528,0.59528,0,0,0,0.59528,0.59528,0.59528,0.59528,0.59528,0.59528,0.59528,0.59528,0.59528,0.59528,0.59528,0.59528,0.59528,0.59528,0.59528,0.59528,0.59528,0.59528,0.59528,0.59528,0.59528,0.59528,0.59528,0.59528,0.567118,0.557465,0.582364,0.582105,0.569597,0.559301,0.545132,0.527121,0.498238,0.473415,0.380939,0,0,0.104355,0,0.181015],[0.496958,0.496958,0.496958,0,0,0,0.496958,0.496958,0.496958,0.496958,0.496958,0.496958,0.496958,0.496958,0.496958,0.496958,0.496958,0.496958,0.496958,0.496958,0.496958,0.496958,0.496958,0.496958,0.496958,0.496958,0.496958,0.496958,0.496958,0.496958,0.497091,0.497496,0.498371,0.497851,0.493398,0.491022,0.482091,0.461508,0.455779,0.458801,0.467427,0,0,0,0,0],[0.361768,0.361768,0.361768,0,0,0,0.361768,0.361768,0.361768,0.361768,0.361768,0.361768,0.361768,0.361768,0.361768,0.361768,0.361768,0.361768,0.361768,0.361768,0.361768,0.361768,0.361768,0.361768,0.361768,0.361768,0.361768,0.361768,0.361768,0.361768,0.359179,0.359225,0.370511,0.365155,0.36131,0.354589,0.358833,0.354196,0.356534,0.360185,0.41851,0.363539,0.320566,0.366688,0,0.3458],[0.684028,0.684028,0.684028,0.679071,0.679071,0.679071,0.684028,0.684028,0.684028,0.684028,0.684028,0.684028,0.684028,0.684028,0.684028,0.684028,0.684028,0.684028,0.684028,0.684028,0.684028,0.684028,0.684028,0.684028,0.684028,0.684028,0.684028,0.684028,0.684028,0.684028,0.685253,0.687811,0.687514,0.685538,0.68235,0.681399,0.682819,0.678458,0.676241,0.67612,0.682778,0.684522,0.685962,0.686465,0.688187,0.685772],[0.0544637,0.0544637,0.0544637,0,0,0,0.0544637,0.0544637,0.0544637,0.0544637,0.0544637,0.0544637,0.0544637,0.0544637,0.0544637,0.0544637,0.0544637,0.0544637,0.0544637,0.0544637,0.0544637,0.0544637,0.0544637,0.0544637,0.0544637,0.0544637,0.0544637,0.0544637,0.0544637,0.0544637,0.0550249,0.0553504,0.0499061,0.0534384,0.044793,0.0322963,0.0245405,0.0181975,0.0202103,0.019411,0.170797,0,0,0,0,0],[0.0891951,0.0891951,0.0891951,0,0,0,0.0891951,0.0891951,0.0891951,0.0891951,0.0891951,0.0891951,0.0891951,0.0891951,0.0891951,0.0891951,0.0891951,0.0891951,0.0891951,0.0891951,0.0891951,0.0891951,0.0891951,0.0891951,0.0891951,0.0891951,0.0891951,0.0891951,0.0891951,0.0891951,0.0932565,0.0959771,0.0958182,0.0954115,0.0875102,0.0879518,0.0898014,0.0899711,0,0,0,0,0,0,0,0],[0.53426,0.53426,0.53426,0,0,0,0.53426,0.53426,0.53426,0.53426,0.53426,0.53426,0.53426,0.53426,0.53426,0.53426,0.53426,0.53426,0.53426,0.53426,0.53426,0.53426,0.53426,0.53426,0.53426,0.53426,0.53426,0.53426,0.53426,0.53426,0.518446,0.504989,0.518253,0.532188,0.513162,0.504528,0.487462,0.468042,0.444239,0.417316,0.296324,0,0,0.00939417,0,0.181328],[0.446253,0.446253,0.446253,0,0,0,0.446253,0.446253,0.446253,0.446253,0.446253,0.446253,0.446253,0.446253,0.446253,0.446253,0.446253,0.446253,0.446253,0.446253,0.446253,0.446253,0.446253,0.446253,0.446253,0.446253,0.446253,0.446253,0.446253,0.446253,0.451696,0.455806,0.438116,0.451011,0.425048,0.420168,0.421585,0.425422,0.424959,0.42439,0.417447,0,0,0,0,0.409357],[0.102753,0.102753,0.102753,0,0,0,0.102753,0.102753,0.102753,0.102753,0.102753,0.102753,0.102753,0.102753,0.102753,0.102753,0.102753,0.102753,0.102753,0.102753,0.102753,0.102753,0.102753,0.102753,0.102753,0.102753,0.102753,0.102753,0.102753,0.102753,0.102729,0.102828,0.0987104,0.100436,0.0935981,0.0806946,0.0702772,0.054906,0.0299774,0.0198809,0.12341,0,0,0,0,0],[0.396484,0.396484,0.396484,0,0,0,0.396484,0.396484,0.396484,0.396484,0.396484,0.396484,0.396484,0.396484,0.396484,0.396484,0.396484,0.396484,0.396484,0.396484,0.396484,0.396484,0.396484,0.396484,0.396484,0.396484,0.396484,0.396484,0.396484,0.396484,0.401827,0.409132,0.424724,0.412457,0.41568,0.421796,0.429313,0.436448,0.442276,0.439053,0.460547,0,0,0.434043,0,0.344103],[0.110049,0.110049,0.110049,0,0,0,0.110049,0.110049,0.110049,0.110049,0.110049,0.110049,0.110049,0.110049,0.110049,0.110049,0.110049,0.110049,0.110049,0.110049,0.110049,0.110049,0.110049,0.110049,0.110049,0.110049,0.110049,0.110049,0.110049,0.110049,0.109349,0.109123,0.105126,0.106634,0.0995601,0.0802612,0.0683592,0.0451567,0.0277143,0.0186325,0.111674,0,0,0,0,0],[0.539246,0.539246,0.539246,0.546963,0.546963,0.546963,0.539246,0.539246,0.539246,0.539246,0.539246,0.539246,0.539246,0.539246,0.539246,0.539246,0.539246,0.539246,0.539246,0.539246,0.539246,0.539246,0.539246,0.539246,0.539246,0.539246,0.539246,0.539246,0.539246,0.539246,0.539066,0.539134,0.539199,0.539123,0.539077,0.539273,0.53932,0.539677,0.540008,0.54017,0.540263,0.540521,0.540596,0.541036,0.541248,0.540771],[0.0548425,0.0548425,0.0548425,0,0,0,0.0548425,0.0548425,0.0548425,0.0548425,0.0548425,0.0548425,0.0548425,0.0548425,0.0548425,0.0548425,0.0548425,0.0548425,0.0548425,0.0548425,0.0548425,0.0548425,0.0548425,0.0548425,0.0548425,0.0548425,0.0548425,0.0548425,0.0548425,0.0548425,0.0542418,0.0533832,0.0498548,0.051891,0.0463195,0.0273696,0.0221977,0.0176158,0.0217204,0.0170223,0,0,0,0,0,0],[0.542839,0.542839,0.542839,0,0,0,0.542839,0.542839,0.542839,0.542839,0.542839,0.542839,0.542839,0.542839,0.542839,0.542839,0.542839,0.542839,0.542839,0.542839,0.542839,0.542839,0.542839,0.542839,0.542839,0.542839,0.542839,0.542839,0.542839,0.542839,0.524727,0.516811,0.553083,0.525625,0.537226,0.526861,0.512477,0.490337,0.47245,0.444906,0.377974,0,0,0.130359,0,0.18641],[0.150671,0.150671,0.150671,0,0,0,0.150671,0.150671,0.150671,0.150671,0.150671,0.150671,0.150671,0.150671,0.150671,0.150671,0.150671,0.150671,0.150671,0.150671,0.150671,0.150671,0.150671,0.150671,0.150671,0.150671,0.150671,0.150671,0.150671,0.150671,0.150852,0.150788,0.146919,0.14878,0.142768,0.126964,0.119384,0.102077,0.0744487,0.0384642,0.1673,0,0,0,0,0],[0.410095,0.410095,0.410095,0,0,0,0.410095,0.410095,0.410095,0.410095,0.410095,0.410095,0.410095,0.410095,0.410095,0.410095,0.410095,0.410095,0.410095,0.410095,0.410095,0.410095,0.410095,0.410095,0.410095,0.410095,0.410095,0.410095,0.410095,0.410095,0.398424,0.393819,0.415969,0.402977,0.407646,0.398718,0.393197,0.368544,0.347764,0.330697,0.404279,0.230818,0.154058,0.0596943,0,0.100313],[0.416503,0.416503,0.416503,0,0,0,0.416503,0.416503,0.416503,0.416503,0.416503,0.416503,0.416503,0.416503,0.416503,0.416503,0.416503,0.416503,0.416503,0.416503,0.416503,0.416503,0.416503,0.416503,0.416503,0.416503,0.416503,0.416503,0.416503,0.416503,0.422869,0.431879,0.413538,0.426203,0.400101,0.394413,0.395265,0.397295,0.397438,0.397063,0.396927,0,0,0.441229,0,0.382928],[0.43507,0.43507,0.43507,0,0,0,0.43507,0.43507,0.43507,0.43507,0.43507,0.43507,0.43507,0.43507,0.43507,0.43507,0.43507,0.43507,0.43507,0.43507,0.43507,0.43507,0.43507,0.43507,0.43507,0.43507,0.43507,0.43507,0.43507,0.43507,0.438539,0.448614,0.428002,0.434548,0.414545,0.407394,0.411703,0.417309,0.418202,0.417991,0.422711,0,0,0.417827,0,0.370956],[0.821136,0.821136,0.821136,0.811291,0.811291,0.811291,0.821136,0.821136,0.821136,0.821136,0.821136,0.821136,0.821136,0.821136,0.821136,0.821136,0.821136,0.821136,0.821136,0.821136,0.821136,0.821136,0.821136,0.821136,0.821136,0.821136,0.821136,0.821136,0.821136,0.821136,0.821926,0.822495,0.822522,0.822497,0.823278,0.822569,0.82126,0.821443,0.821284,0.818062,0.813727,0.815449,0.810539,0.807021,0.798309,0.807851],[0.430851,0.430851,0.430851,0,0,0,0.430851,0.430851,0.430851,0.430851,0.430851,0.430851,0.430851,0.430851,0.430851,0.430851,0.430851,0.430851,0.430851,0.430851,0.430851,0.430851,0.430851,0.430851,0.430851,0.430851,0.430851,0.430851,0.430851,0.430851,0.42683,0.433715,0.435988,0.434987,0.428295,0.424971,0.423909,0.422747,0.418467,0.415278,0.405242,0,0,0,0,0.405511],[0.101606,0.101606,0.101606,0,0,0,0.101606,0.101606,0.101606,0.101606,0.101606,0.101606,0.101606,0.101606,0.101606,0.101606,0.101606,0.101606,0.101606,0.101606,0.101606,0.101606,0.101606,0.101606,0.101606,0.101606,0.101606,0.101606,0.101606,0.101606,0.101141,0.101381,0.0968134,0.0981556,0.0916496,0.0752112,0.0632372,0.0494419,0.0262216,0.0183296,0.112508,0,0,0,0,0],[0.449582,0.449582,0.449582,0.461298,0.461298,0.461298,0.449582,0.449582,0.449582,0.449582,0.449582,0.449582,0.449582,0.449582,0.449582,0.449582,0.449582,0.449582,0.449582,0.449582,0.449582,0.449582,0.449582,0.449582,0.449582,0.449582,0.449582,0.449582,0.449582,0.449582,0.448939,0.447747,0.44916,0.448292,0.448309,0.450119,0.448963,0.446121,0.4469,0.445914,0.451929,0.455284,0.454089,0.468171,0.468576,0.460603],[0.466496,0.466496,0.466496,0,0,0,0.466496,0.466496,0.466496,0.466496,0.466496,0.466496,0.466496,0.466496,0.466496,0.466496,0.466496,0.466496,0.466496,0.466496,0.466496,0.466496,0.466496,0.466496,0.466496,0.466496,0.466496,0.466496,0.466496,0.466496,0.467094,0.467914,0.469095,0.470014,0.460429,0.457925,0.450468,0.43648,0.438498,0.433476,0.455836,0,0,0,0,0],[0.624708,0.624708,0.624708,0.622507,0.622507,0.622507,0.624708,0.624708,0.624708,0.624708,0.624708,0.624708,0.624708,0.624708,0.624708,0.624708,0.624708,0.624708,0.624708,0.624708,0.624708,0.624708,0.624708,0.624708,0.624708,0.624708,0.624708,0.624708,0.624708,0.624708,0.623141,0.622646,0.62599,0.622981,0.622384,0.625291,0.624968,0.622767,0.621487,0.620373,0.619648,0.616427,0.614055,0.612757,0.612532,0.615279],[0.526177,0.526177,0.526177,0,0,0,0.526177,0.526177,0.526177,0.526177,0.526177,0.526177,0.526177,0.526177,0.526177,0.526177,0.526177,0.526177,0.526177,0.526177,0.526177,0.526177,0.526177,0.526177,0.526177,0.526177,0.526177,0.526177,0.526177,0.526177,0.480287,0.470079,0.553857,0.489107,0.561176,0.552853,0.538499,0.507974,0.485248,0.449111,0.386123,0,0,0.107808,0,0.163175],[0.45481,0.45481,0.45481,0,0,0,0.45481,0.45481,0.45481,0.45481,0.45481,0.45481,0.45481,0.45481,0.45481,0.45481,0.45481,0.45481,0.45481,0.45481,0.45481,0.45481,0.45481,0.45481,0.45481,0.45481,0.45481,0.45481,0.45481,0.45481,0.455389,0.455943,0.454923,0.45635,0.44954,0.447753,0.440691,0.423731,0.427265,0.423051,0.490448,0,0,0,0,0],[0.204234,0.204234,0.204234,0,0,0,0.204234,0.204234,0.204234,0.204234,0.204234,0.204234,0.204234,0.204234,0.204234,0.204234,0.204234,0.204234,0.204234,0.204234,0.204234,0.204234,0.204234,0.204234,0.204234,0.204234,0.204234,0.204234,0.204234,0.204234,0.204113,0.205368,0.202543,0.20299,0.196526,0.185895,0.178505,0.170746,0.148086,0.129567,0.0828415,0,0,0,0,0],[0.367898,0.367898,0.367898,0,0,0,0.367898,0.367898,0.367898,0.367898,0.367898,0.367898,0.367898,0.367898,0.367898,0.367898,0.367898,0.367898,0.367898,0.367898,0.367898,0.367898,0.367898,0.367898,0.367898,0.367898,0.367898,0.367898,0.367898,0.367898,0.370057,0.374154,0.372622,0.372275,0.355544,0.350507,0.352565,0.354334,0.355713,0.353757,0.357839,0,0,0.428125,0,0.351858],[0.117691,0.117691,0.117691,0.138631,0.138631,0.138631,0.117691,0.117691,0.117691,0.117691,0.117691,0.117691,0.117691,0.117691,0.117691,0.117691,0.117691,0.117691,0.117691,0.117691,0.117691,0.117691,0.117691,0.117691,0.117691,0.117691,0.117691,0.117691,0.117691,0.117691,0.121325,0.11973,0.115287,0.118254,0.111078,0.109886,0.109614,0.109523,0.1113,0.109874,0.108667,0.101558,0.0960157,0.130688,0.140281,0.108177],[0.778065,0.778065,0.778065,0.78798,0.78798,0.78798,0.778065,0.778065,0.778065,0.778065,0.778065,0.778065,0.778065,0.778065,0.778065,0.778065,0.778065,0.778065,0.778065,0.778065,0.778065,0.778065,0.778065,0.778065,0.778065,0.778065,0.778065,0.778065,0.778065,0.778065,0.776055,0.774519,0.7694,0.774433,0.774804,0.77705,0.775125,0.774783,0.775015,0.775836,0.778349,0.781946,0.781645,0.777685,0.78165,0.779866],[0.51824,0.51824,0.51824,0,0,0,0.51824,0.51824,0.51824,0.51824,0.51824,0.51824,0.51824,0.51824,0.51824,0.51824,0.51824,0.51824,0.51824,0.51824,0.51824,0.51824,0.51824,0.51824,0.51824,0.51824,0.51824,0.51824,0.51824,0.51824,0.501449,0.49275,0.500936,0.528518,0.500707,0.491616,0.472689,0.452038,0.428517,0.400894,0.287902,0,0,0.00840527,0,0.108004],[0.406896,0.406896,0.406896,0,0,0,0.406896,0.406896,0.406896,0.406896,0.406896,0.406896,0.406896,0.406896,0.406896,0.406896,0.406896,0.406896,0.406896,0.406896,0.406896,0.406896,0.406896,0.406896,0.406896,0.406896,0.406896,0.406896,0.406896,0.406896,0.414483,0.423803,0.41058,0.423448,0.394538,0.388644,0.389319,0.391539,0.391864,0.391256,0.405444,0,0,0.435431,0,0.36059],[0.439912,0.439912,0.439912,0,0,0,0.439912,0.439912,0.439912,0.439912,0.439912,0.439912,0.439912,0.439912,0.439912,0.439912,0.439912,0.439912,0.439912,0.439912,0.439912,0.439912,0.439912,0.439912,0.439912,0.439912,0.439912,0.439912,0.439912,0.439912,0.446466,0.451574,0.429526,0.441795,0.417601,0.412222,0.413791,0.417597,0.418591,0.418759,0.418723,0,0,0.412832,0,0.413656],[0.261884,0.261884,0.261884,0,0,0,0.261884,0.261884,0.261884,0.261884,0.261884,0.261884,0.261884,0.261884,0.261884,0.261884,0.261884,0.261884,0.261884,0.261884,0.261884,0.261884,0.261884,0.261884,0.261884,0.261884,0.261884,0.261884,0.261884,0.261884,0.262196,0.263839,0.258682,0.260631,0.253516,0.240025,0.231006,0.215567,0.187305,0.160848,0.101928,0,0,0,0,0],[0.579374,0.579374,0.579374,0,0,0,0.579374,0.579374,0.579374,0.579374,0.579374,0.579374,0.579374,0.579374,0.579374,0.579374,0.579374,0.579374,0.579374,0.579374,0.579374,0.579374,0.579374,0.579374,0.579374,0.579374,0.579374,0.579374,0.579374,0.579374,0.579022,0.57576,0.573264,0.57638,0.579428,0.569769,0.553384,0.539439,0,0,0,0,0,0,0,0],[0.230018,0.230018,0.230018,0.265555,0.265555,0.265555,0.230018,0.230018,0.230018,0.230018,0.230018,0.230018,0.230018,0.230018,0.230018,0.230018,0.230018,0.230018,0.230018,0.230018,0.230018,0.230018,0.230018,0.230018,0.230018,0.230018,0.230018,0.230018,0.230018,0.230018,0.228681,0.227422,0.228515,0.226399,0.23087,0.23231,0.22904,0.228337,0.22853,0.227974,0.225432,0.225165,0.223333,0.237067,0.253136,0.224881],[0.815262,0.815262,0.815262,0.821639,0.821639,0.821639,0.815262,0.815262,0.815262,0.815262,0.815262,0.815262,0.815262,0.815262,0.815262,0.815262,0.815262,0.815262,0.815262,0.815262,0.815262,0.815262,0.815262,0.815262,0.815262,0.815262,0.815262,0.815262,0.815262,0.815262,0.815063,0.814983,0.813652,0.814503,0.813854,0.811651,0.81111,0.811488,0.81148,0.812017,0.815096,0.815878,0.813429,0.808218,0.797769,0.812485],[0.425065,0.425065,0.425065,0,0,0,0.425065,0.425065,0.425065,0.425065,0.425065,0.425065,0.425065,0.425065,0.425065,0.425065,0.425065,0.425065,0.425065,0.425065,0.425065,0.425065,0.425065,0.425065,0.425065,0.425065,0.425065,0.425065,0.425065,0.425065,0.433385,0.442779,0.419189,0.434403,0.406565,0.40141,0.402252,0.404794,0.406132,0.406414,0.407944,0,0,0.432907,0,0.398722],[0.112402,0.112402,0.112402,0,0,0,0.112402,0.112402,0.112402,0.112402,0.112402,0.112402,0.112402,0.112402,0.112402,0.112402,0.112402,0.112402,0.112402,0.112402,0.112402,0.112402,0.112402,0.112402,0.112402,0.112402,0.112402,0.112402,0.112402,0.112402,0.112145,0.113432,0.110913,0.112488,0.107522,0.103476,0.0970407,0.0860801,0.066747,0.0423101,0.223387,0,0,0,0,0],[0.430419,0.430419,0.430419,0,0,0,0.430419,0.430419,0.430419,0.430419,0.430419,0.430419,0.430419,0.430419,0.430419,0.430419,0.430419,0.430419,0.430419,0.430419,0.430419,0.430419,0.430419,0.430419,0.430419,0.430419,0.430419,0.430419,0.430419,0.430419,0.442212,0.448338,0.426143,0.440351,0.413631,0.408111,0.408833,0.412923,0.413494,0.412733,0.40684,0,0,0,0,0.404998],[0.520902,0.520902,0.520902,0,0,0,0.520902,0.520902,0.520902,0.520902,0.520902,0.520902,0.520902,0.520902,0.520902,0.520902,0.520902,0.520902,0.520902,0.520902,0.520902,0.520902,0.520902,0.520902,0.520902,0.520902,0.520902,0.520902,0.520902,0.520902,0.496065,0.482911,0.493291,0.507911,0.484245,0.477791,0.459485,0.441084,0.41259,0.385504,0.268533,0,0,0,0,0.0289197],[0.393807,0.393807,0.393807,0.402961,0.402961,0.402961,0.393807,0.393807,0.393807,0.393807,0.393807,0.393807,0.393807,0.393807,0.393807,0.393807,0.393807,0.393807,0.393807,0.393807,0.393807,0.393807,0.393807,0.393807,0.393807,0.393807,0.393807,0.393807,0.393807,0.393807,0.395141,0.395114,0.396246,0.395592,0.397371,0.39706,0.398014,0.398622,0.398965,0.399404,0.400009,0.399706,0.39797,0.399346,0.39906,0.398453],[0.0241121,0.0241121,0.0241121,0,0,0,0.0241121,0.0241121,0.0241121,0.0241121,0.0241121,0.0241121,0.0241121,0.0241121,0.0241121,0.0241121,0.0241121,0.0241121,0.0241121,0.0241121,0.0241121,0.0241121,0.0241121,0.0241121,0.0241121,0.0241121,0.0241121,0.0241121,0.0241121,0.0241121,0.0243541,0.0245614,0.0226802,0.0236107,0.018773,0.0148085,0.0147978,0.0150427,0.0182812,0.0208316,0.177875,0,0,0,0,0],[0.491392,0.491392,0.491392,0,0,0,0.491392,0.491392,0.491392,0.491392,0.491392,0.491392,0.491392,0.491392,0.491392,0.491392,0.491392,0.491392,0.491392,0.491392,0.491392,0.491392,0.491392,0.491392,0.491392,0.491392,0.491392,0.491392,0.491392,0.491392,0.444631,0.434354,0.524604,0.459176,0.538472,0.526777,0.511007,0.477358,0.450819,0.412703,0.335655,0,0,0,0,0.156115],[0.429912,0.429912,0.429912,0,0,0,0.429912,0.429912,0.429912,0.429912,0.429912,0.429912,0.429912,0.429912,0.429912,0.429912,0.429912,0.429912,0.429912,0.429912,0.429912,0.429912,0.429912,0.429912,0.429912,0.429912,0.429912,0.429912,0.429912,0.429912,0.427394,0.435999,0.420681,0.421897,0.406905,0.408883,0.411225,0.414191,0.414511,0.414761,0.421739,0,0,0.403948,0,0.352846],[0.0237761,0.0237761,0.0237761,0,0,0,0.0237761,0.0237761,0.0237761,0.0237761,0.0237761,0.0237761,0.0237761,0.0237761,0.0237761,0.0237761,0.0237761,0.0237761,0.0237761,0.0237761,0.0237761,0.0237761,0.0237761,0.0237761,0.0237761,0.0237761,0.0237761,0.0237761,0.0237761,0.0237761,0.0237831,0.0237747,0.0218054,0.0223853,0.0203356,0.01715,0.0162433,0.0157508,0.0177439,0.0189165,0.17213,0,0,0,0,0],[0.443515,0.443515,0.443515,0,0,0,0.443515,0.443515,0.443515,0.443515,0.443515,0.443515,0.443515,0.443515,0.443515,0.443515,0.443515,0.443515,0.443515,0.443515,0.443515,0.443515,0.443515,0.443515,0.443515,0.443515,0.443515,0.443515,0.443515,0.443515,0.4443,0.445452,0.443732,0.444447,0.441558,0.438953,0.43511,0.423936,0.412579,0.408079,0.464436,0,0,0,0,0],[0.45634,0.45634,0.45634,0,0,0,0.45634,0.45634,0.45634,0.45634,0.45634,0.45634,0.45634,0.45634,0.45634,0.45634,0.45634,0.45634,0.45634,0.45634,0.45634,0.45634,0.45634,0.45634,0.45634,0.45634,0.45634,0.45634,0.45634,0.45634,0.456923,0.457293,0.457284,0.45688,0.455834,0.452731,0.448578,0.443363,0.434433,0.424495,0.419894,0,0,0,0,0],[0.477422,0.477422,0.477422,0.501547,0.501547,0.501547,0.477422,0.477422,0.477422,0.477422,0.477422,0.477422,0.477422,0.477422,0.477422,0.477422,0.477422,0.477422,0.477422,0.477422,0.477422,0.477422,0.477422,0.477422,0.477422,0.477422,0.477422,0.477422,0.477422,0.477422,0.477432,0.47748,0.477331,0.477479,0.477313,0.477678,0.47875,0.480577,0.48196,0.482681,0.487939,0.489213,0.490749,0.495524,0.50114,0.492736],[0.0638131,0.0638131,0.0638131,0,0,0,0.0638131,0.0638131,0.0638131,0.0638131,0.0638131,0.0638131,0.0638131,0.0638131,0.0638131,0.0638131,0.0638131,0.0638131,0.0638131,0.0638131,0.0638131,0.0638131,0.0638131,0.0638131,0.0638131,0.0638131,0.0638131,0.0638131,0.0638131,0.0638131,0.0636309,0.0632372,0.0616828,0.0624193,0.0568239,0.044646,0.0367491,0.0279695,0.0211512,0.0198449,0.152649,0,0,0,0,0],[0.411805,0.411805,0.411805,0,0,0,0.411805,0.411805,0.411805,0.411805,0.411805,0.411805,0.411805,0.411805,0.411805,0.411805,0.411805,0.411805,0.411805,0.411805,0.411805,0.411805,0.411805,0.411805,0.411805,0.411805,0.411805,0.411805,0.411805,0.411805,0.416394,0.424926,0.409986,0.406284,0.390013,0.381802,0.383461,0.391434,0.393855,0.391449,0.400279,0,0,0.434856,0,0.346088],25,[0.368108,0.368108,0.368108,0,0,0,0.368108,0.368108,0.368108,0.368108,0.368108,0.368108,0.368108,0.368108,0.368108,0.368108,0.368108,0.368108,0.368108,0.368108,0.368108,0.368108,0.368108,0.368108,0.368108,0.368108,0.368108,0.368108,0.368108,0.368108,0.363292,0.366387,0.364083,0.36808,0.356994,0.356186,0.353955,0.350064,0.344502,0.342,0.329341,0,0,0.355768,0,0.378391],[0.399114,0.399114,0.399114,0,0,0,0.399114,0.399114,0.399114,0.399114,0.399114,0.399114,0.399114,0.399114,0.399114,0.399114,0.399114,0.399114,0.399114,0.399114,0.399114,0.399114,0.399114,0.399114,0.399114,0.399114,0.399114,0.399114,0.399114,0.399114,0.399894,0.399905,0.399106,0.3997,0.397057,0.395637,0.391855,0.390962,0.380463,0.383624,0,0,0,0,0,0],[0.110802,0.110802,0.110802,0,0,0,0.110802,0.110802,0.110802,0.110802,0.110802,0.110802,0.110802,0.110802,0.110802,0.110802,0.110802,0.110802,0.110802,0.110802,0.110802,0.110802,0.110802,0.110802,0.110802,0.110802,0.110802,0.110802,0.110802,0.110802,0.111332,0.111822,0.108947,0.11035,0.103296,0.0906004,0.0859786,0.062927,0.0391179,0.0310239,0.133727,0,0,0,0,0],[0.41466,0.41466,0.41466,0,0,0,0.41466,0.41466,0.41466,0.41466,0.41466,0.41466,0.41466,0.41466,0.41466,0.41466,0.41466,0.41466,0.41466,0.41466,0.41466,0.41466,0.41466,0.41466,0.41466,0.41466,0.41466,0.41466,0.41466,0.41466,0.417034,0.423521,0.423729,0.418714,0.413116,0.416772,0.421493,0.426379,0.428085,0.428693,0.448324,0,0,0.429682,0,0.346237],[0.435688,0.435688,0.435688,0,0,0,0.435688,0.435688,0.435688,0.435688,0.435688,0.435688,0.435688,0.435688,0.435688,0.435688,0.435688,0.435688,0.435688,0.435688,0.435688,0.435688,0.435688,0.435688,0.435688,0.435688,0.435688,0.435688,0.435688,0.435688,0.43697,0.437748,0.43703,0.438256,0.430639,0.428863,0.423764,0.415232,0.409347,0.412642,0.459792,0,0,0,0,0],[0.442893,0.442893,0.442893,0,0,0,0.442893,0.442893,0.442893,0.442893,0.442893,0.442893,0.442893,0.442893,0.442893,0.442893,0.442893,0.442893,0.442893,0.442893,0.442893,0.442893,0.442893,0.442893,0.442893,0.442893,0.442893,0.442893,0.442893,0.442893,0.439508,0.444029,0.446504,0.446885,0.434358,0.430223,0.429864,0.430755,0.426764,0.423663,0.411071,0,0,0,0,0.415579],[0.587632,0.587632,0.587632,0,0,0,0.587632,0.587632,0.587632,0.587632,0.587632,0.587632,0.587632,0.587632,0.587632,0.587632,0.587632,0.587632,0.587632,0.587632,0.587632,0.587632,0.587632,0.587632,0.587632,0.587632,0.587632,0.587632,0.587632,0.587632,0.562825,0.55653,0.573737,0.564234,0.566475,0.555575,0.538977,0.519672,0.495886,0.470314,0.389479,0,0,0.11266,0,0.18808],[0.480291,0.480291,0.480291,0.476794,0.476794,0.476794,0.480291,0.480291,0.480291,0.480291,0.480291,0.480291,0.480291,0.480291,0.480291,0.480291,0.480291,0.480291,0.480291,0.480291,0.480291,0.480291,0.480291,0.480291,0.480291,0.480291,0.480291,0.480291,0.480291,0.480291,0.482249,0.480615,0.4834,0.480488,0.480235,0.484707,0.485455,0.480707,0.479695,0.480727,0.477987,0.476165,0.473637,0.471679,0.471144,0.474417],[0.487587,0.487587,0.487587,0,0,0,0.487587,0.487587,0.487587,0.487587,0.487587,0.487587,0.487587,0.487587,0.487587,0.487587,0.487587,0.487587,0.487587,0.487587,0.487587,0.487587,0.487587,0.487587,0.487587,0.487587,0.487587,0.487587,0.487587,0.487587,0.488348,0.488563,0.487894,0.488274,0.485159,0.483058,0.480062,0.464431,0.450689,0.44785,0.465273,0,0,0,0,0],[0.441586,0.441586,0.441586,0,0,0,0.441586,0.441586,0.441586,0.441586,0.441586,0.441586,0.441586,0.441586,0.441586,0.441586,0.441586,0.441586,0.441586,0.441586,0.441586,0.441586,0.441586,0.441586,0.441586,0.441586,0.441586,0.441586,0.441586,0.441586,0.442258,0.442371,0.441065,0.441773,0.439819,0.436891,0.435743,0.424649,0.412579,0.399066,0.476791,0,0,0,0,0],[0.0318525,0.0318525,0.0318525,0,0,0,0.0318525,0.0318525,0.0318525,0.0318525,0.0318525,0.0318525,0.0318525,0.0318525,0.0318525,0.0318525,0.0318525,0.0318525,0.0318525,0.0318525,0.0318525,0.0318525,0.0318525,0.0318525,0.0318525,0.0318525,0.0318525,0.0318525,0.0318525,0.0318525,0.0316939,0.0309895,0.0295434,0.0300431,0.0269248,0.0199101,0.0173464,0.0180922,0.01764,0.0191318,0.196985,0,0,0,0,0],[0.388652,0.388652,0.388652,0,0,0,0.388652,0.388652,0.388652,0.388652,0.388652,0.388652,0.388652,0.388652,0.388652,0.388652,0.388652,0.388652,0.388652,0.388652,0.388652,0.388652,0.388652,0.388652,0.388652,0.388652,0.388652,0.388652,0.388652,0.388652,0.395811,0.404267,0.393654,0.39265,0.373147,0.367536,0.370049,0.374525,0.375855,0.375904,0.382444,0,0,0.430766,0,0.346908],[0.58603,0.58603,0.58603,0,0,0,0.58603,0.58603,0.58603,0.58603,0.58603,0.58603,0.58603,0.58603,0.58603,0.58603,0.58603,0.58603,0.58603,0.58603,0.58603,0.58603,0.58603,0.58603,0.58603,0.58603,0.58603,0.58603,0.58603,0.58603,0.552916,0.54602,0.603386,0.561927,0.626661,0.622056,0.599757,0.571055,0.543242,0.504178,0.433521,0,0,0.109474,0,0.172189],[0.227427,0.227427,0.227427,0,0,0,0.227427,0.227427,0.227427,0.227427,0.227427,0.227427,0.227427,0.227427,0.227427,0.227427,0.227427,0.227427,0.227427,0.227427,0.227427,0.227427,0.227427,0.227427,0.227427,0.227427,0.227427,0.227427,0.227427,0.227427,0.226712,0.228167,0.224049,0.225356,0.218891,0.205752,0.195831,0.184292,0.158103,0.132525,0.0926074,0,0,0,0,0],61,[0.145215,0.145215,0.145215,0,0,0,0.145215,0.145215,0.145215,0.145215,0.145215,0.145215,0.145215,0.145215,0.145215,0.145215,0.145215,0.145215,0.145215,0.145215,0.145215,0.145215,0.145215,0.145215,0.145215,0.145215,0.145215,0.145215,0.145215,0.145215,0.144662,0.145876,0.140813,0.142778,0.134423,0.11845,0.107384,0.0866141,0.0551191,0.0283827,0.190118,0,0,0,0,0]]
    
    input = np.array([np.array(sublist) for sublist in parsed_example])
    
    
    opened by RodGal-2020 0
  • IndexError when training model

    IndexError when training model

    This is the command used to train the model : python -m train --experiment_name "Spoter" --training_set_path "data/WLASL100_train_25fps.csv" --validation_set_path "data/WLASL100_val_25fps.csv" --testing_set_path "data/WLASL100_test_25fps.csv"

    I get the following error after the program runs for awhile:

    Starting Spoter... Traceback (most recent call last): File "/usr/lib/python3.7/runpy.py", line 193, in _run_module_as_main "main", mod_spec) File "/usr/lib/python3.7/runpy.py", line 85, in _run_code exec(code, run_globals) File "/content/drive/MyDrive/Spoter/train.py", line 272, in train(args) File "/content/drive/MyDrive/Spoter/train.py", line 174, in train train_loss, _, _, train_acc = train_epoch(slrt_model, train_loader, cel_criterion, sgd_optimizer, device) File "/content/drive/MyDrive/Spoter/spoter/utils.py", line 19, in train_epoch loss = criterion(outputs[0], labels[0]) File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py", line 1102, in _call_impl return forward_call(*input, **kwargs) File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/loss.py", line 1152, in forward label_smoothing=self.label_smoothing) File "/usr/local/lib/python3.7/dist-packages/torch/nn/functional.py", line 2846, in cross_entropy return torch._C._nn.cross_entropy_loss(input, target, weight, _Reduction.get_enum(reduction), ignore_index, label_smoothing) IndexError: Target 78 is out of bounds.

    Changing parameters like the epochs and learning rate does not fix the issue.

    question 
    opened by adhithiyaa-git 3
  • Problematic normalization

    Problematic normalization

    Screen Shot 2022-02-13 at 5 36 52 PM Got a validation accuracy around 58%, lower than the one proposed in the paper. Is the lower accuracy caused by this problematic normalization error?

    bug 
    opened by Coco-hanqi 6
  • Thank for your work! Please comment,when training ,report another error.

    Thank for your work! Please comment,when training ,report another error.

    RuntimeError: CUDA error: device-side assert triggered. ` for i, data in enumerate(dataloader): inputs, labels = data # inputs, labels = Variable(inputs), Variable(labels)-1 inputs = inputs.squeeze(0).to(device) labels = labels.to(device, dtype=torch.long)

        optimizer.zero_grad()
        outputs = model(inputs).expand(1, -1, -1)
    
        loss = criterion(outputs[0], labels[0])`
    
    bug 
    opened by showfaker66 5
Releases(supplementary-data)
  • supplementary-data(Dec 9, 2021)

    As SPOTER works on top of sequences of signers' skeletal data extracted from videos, we wanted to eliminate the computational demands of such annotation for each training run by pre-collecting this. For this reason and reproducibility, we are open-sourcing this data along with the code as well.

    This data is shared under the Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license allowing only for non-commercial usage only.

    We employed the WLASL100 and LSA64 datasets for our experiments. Their corresponding citations can be found below:

    @inproceedings{li2020word,
        title={Word-level Deep Sign Language Recognition from Video: A New Large-scale Dataset and Methods Comparison},
        author={Li, Dongxu and Rodriguez, Cristian and Yu, Xin and Li, Hongdong},
        booktitle={The IEEE Winter Conference on Applications of Computer Vision},
        pages={1459--1469},
        year={2020}
    }
    
    @inproceedings{ronchetti2016lsa64,
        title={LSA64: an Argentinian sign language dataset},
        author={Ronchetti, Franco and Quiroga, Facundo and Estrebou, C{\'e}sar Armando and Lanzarini, Laura Cristina and Rosete, Alejandro},
        booktitle={XXII Congreso Argentino de Ciencias de la Computaci{\'o}n (CACIC 2016).},
        year={2016}
    }
    
    Source code(tar.gz)
    Source code(zip)
    LSA64_60fps.csv(185.14 MB)
    WLASL100_test_25fps.csv(10.37 MB)
    WLASL100_train_25fps.csv(57.16 MB)
    WLASL100_val_25fps.csv(13.57 MB)
Owner
Matyáš Boháček
ML&NLP Researcher at @dataclair • Research Fellow with the University of West Bohemia •  WWDC19 & 21 Scholarship Winner
Matyáš Boháček
Code repository accompanying the paper "On Adversarial Robustness: A Neural Architecture Search perspective"

On Adversarial Robustness: A Neural Architecture Search perspective Preparation: Clone the repository: https://github.com/tdchaitanya/nas-robustness.g

Chaitanya Devaguptapu 4 Nov 10, 2022
This repository contains the accompanying code for Deep Virtual Markers for Articulated 3D Shapes, ICCV'21

Deep Virtual Markers This repository contains the accompanying code for Deep Virtual Markers for Articulated 3D Shapes, ICCV'21 Getting Started Get sa

KimHyomin 45 Oct 7, 2022
Codes accompanying the paper "Learning Nearly Decomposable Value Functions with Communication Minimization" (ICLR 2020)

NDQ: Learning Nearly Decomposable Value Functions with Communication Minimization Note This codebase accompanies paper Learning Nearly Decomposable Va

Tonghan Wang 69 Nov 26, 2022
Code accompanying our paper Feature Learning in Infinite-Width Neural Networks

Empirical Experiments in "Feature Learning in Infinite-width Neural Networks" This repo contains code to replicate our experiments (Word2Vec, MAML) in

Edward Hu 37 Dec 14, 2022
Code accompanying the paper "Wasserstein GAN"

Wasserstein GAN Code accompanying the paper "Wasserstein GAN" A few notes The first time running on the LSUN dataset it can take a long time (up to an

null 3.1k Jan 1, 2023
PyTorch code accompanying our paper on Maximum Entropy Generators for Energy-Based Models

Maximum Entropy Generators for Energy-Based Models All experiments have tensorboard visualizations for samples / density / train curves etc. To run th

Rithesh Kumar 135 Oct 27, 2022
Datasets accompanying the paper ConditionalQA: A Complex Reading Comprehension Dataset with Conditional Answers.

ConditionalQA Datasets accompanying the paper ConditionalQA: A Complex Reading Comprehension Dataset with Conditional Answers. Disclaimer This dataset

null 2 Oct 14, 2021
Code accompanying the paper "How Tight Can PAC-Bayes be in the Small Data Regime?"

How Tight Can PAC-Bayes be in the Small Data Regime? This is the code to reproduce all experiments for the following paper: @inproceedings{Foong:2021:

null 5 Dec 21, 2021
Code accompanying "Dynamic Neural Relational Inference" from CVPR 2020

Code accompanying "Dynamic Neural Relational Inference" This codebase accompanies the paper "Dynamic Neural Relational Inference" from CVPR 2020. This

Colin Graber 48 Dec 23, 2022
Code accompanying "Learning What To Do by Simulating the Past", ICLR 2021.

Learning What To Do by Simulating the Past This repository contains code that implements the Deep Reward Learning by Simulating the Past (Deep RSLP) a

Center for Human-Compatible AI 24 Aug 7, 2021
Collection of NLP model explanations and accompanying analysis tools

Thermostat is a large collection of NLP model explanations and accompanying analysis tools. Combines explainability methods from the captum library wi

null 126 Nov 22, 2022
The LaTeX and Python code for generating the paper, experiments' results and visualizations reported in each paper is available (whenever possible) in the paper's directory

This repository contains the software implementation of most algorithms used or developed in my research. The LaTeX and Python code for generating the

João Fonseca 3 Jan 3, 2023
Home repository for the Regularized Greedy Forest (RGF) library. It includes original implementation from the paper and multithreaded one written in C++, along with various language-specific wrappers.

Regularized Greedy Forest Regularized Greedy Forest (RGF) is a tree ensemble machine learning method described in this paper. RGF can deliver better r

RGF-team 364 Dec 28, 2022
A code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Vanderhaeghe, and Yotam Gingold from SIGGRAPH Asia 2020.

A Benchmark for Rough Sketch Cleanup This is the code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Va

null 33 Dec 18, 2022
Repository for the paper "PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation", CVPR 2021.

PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation Code repository for the paper: PoseAug: A Differentiable Pose Augme

Pyjcsx 328 Dec 17, 2022
Offcial repository for the IEEE ICRA 2021 paper Auto-Tuned Sim-to-Real Transfer.

Offcial repository for the IEEE ICRA 2021 paper Auto-Tuned Sim-to-Real Transfer.

null 47 Jun 30, 2022
Code repository for paper `Skeleton Merger: an Unsupervised Aligned Keypoint Detector`.

Skeleton Merger Skeleton Merger, an Unsupervised Aligned Keypoint Detector. The paper is available at https://arxiv.org/abs/2103.10814. A map of the r

北海若 48 Nov 14, 2022
Official repository for the ICLR 2021 paper Evaluating the Disentanglement of Deep Generative Models with Manifold Topology

Official repository for the ICLR 2021 paper Evaluating the Disentanglement of Deep Generative Models with Manifold Topology Sharon Zhou, Eric Zelikman

Stanford Machine Learning Group 34 Nov 16, 2022