An implementation for Neural Architecture Search with Random Labels (CVPR 2021 poster) on Pytorch.

Related tags

Deep Learning RLNAS
Overview

Neural Architecture Search with Random Labels(RLNAS)

Introduction

This project provides an implementation for Neural Architecture Search with Random Labels (CVPR 2021 poster) on Pytorch. Experiments are evaluated on multiple datasets (NAS-Bench-201 and ImageNet) and multiple search spaces (DARTS-like and MobileNet-like). RLNAS achieves comparable or even better results compared with state-of-the-art NAS methods such as PC-DARTS, Single Path One-Shot, even though the counterparts utilize full ground truth labels for searching. We hope our finding could inspire new understandings on the essential of NAS.

Requirements

  • Pytorch 1.4
  • Python3.5+

Search results

1.Results in NAS-Benchmark-201 search space

nas_201_results

2.Results in DARTS searh space

darts_search_sapce_results

Architeture visualization

1) Architecture searched on CIFAR-10

  • RLDARTS = Genotype(
    normal=[
    ('sep_conv_5x5', 0), ('sep_conv_3x3', 1),
    ('dil_conv_3x3', 0), ('sep_conv_5x5', 2),
    ('sep_conv_3x3', 0), ('dil_conv_5x5', 3),
    ('dil_conv_5x5', 1), ('dil_conv_3x3', 2)],
    normal_concat=[2, 3, 4, 5],
    reduce=[
    ('sep_conv_5x5', 0), ('dil_conv_3x3', 1),
    ('sep_conv_3x3', 0), ('sep_conv_5x5', 2),
    ('dil_conv_3x3', 1), ('sep_conv_3x3', 3),
    ('max_pool_3x3', 1), ('sep_conv_5x5', 2,)],
    reduce_concat=[2, 3, 4, 5])

  • Normal cell: architecture_searched_on_cifar10

  • Reduction cell: architecture_searched_on_cifar10

2) Architecture searched on ImageNet-1k without FLOPs constrain

  • RLDARTS = Genotype( normal=[
    ('sep_conv_3x3', 0), ('sep_conv_3x3', 1),
    ('sep_conv_3x3', 1), ('sep_conv_3x3', 2),
    ('sep_conv_3x3', 0), ('sep_conv_5x5', 1),
    ('sep_conv_3x3', 0), ('sep_conv_3x3', 1)],
    normal_concat=[2, 3, 4, 5],
    reduce=[
    ('sep_conv_3x3', 0), ('sep_conv_3x3', 1),
    ('sep_conv_5x5', 0), ('sep_conv_3x3', 2),
    ('sep_conv_5x5', 0), ('sep_conv_5x5', 2),
    ('sep_conv_3x3', 2), ('sep_conv_3x3', 4)],
    reduce_concat=[2, 3, 4, 5])

  • Normal cell: architecture_searched_on_imagenet_no_flops_constrain

  • Reduction cell: architecture_searched_on_cifar10

3) Architecture searched on ImageNet-1k with 600M FLOPs constrain

  • RLDARTS = Genotype(
    normal=[
    ('sep_conv_3x3', 0), ('sep_conv_3x3', 1),
    ('skip_connect', 1), ('sep_conv_3x3', 2),
    ('sep_conv_3x3', 1), ('sep_conv_3x3', 2),
    ('skip_connect', 0), ('sep_conv_3x3', 4)],
    normal_concat=[2, 3, 4, 5],
    reduce=[ ('sep_conv_3x3', 0), ('max_pool_3x3', 1),
    ('sep_conv_3x3', 0), ('skip_connect', 1),
    ('sep_conv_3x3', 0), ('dil_conv_3x3', 1),
    ('skip_connect', 0), ('sep_conv_3x3', 1)],
    reduce_concat=[2, 3, 4, 5])

  • Normal cell: architecture_searched_on_imagenet_no_flops_constrain

  • Reduction cell: architecture_searched_on_cifar10

3.Results in MobileNet search space

The MobileNet-like search space proposed in ProxylessNAS is adopted in this paper. The SuperNet contains 21 choice blocks and each block has 7 alternatives:6 MobileNet blocks (combination of kernel size {3,5,7} and expand ratio {3,6}) and ’skip-connect’.

mobilenet_search_sapce_results

Architeture visualization

mobilenet_search_sapce_results

Usage

  • RLNAS in NAS-Benchmark-201

1)enter the work directory

cd nas_bench_201

2)train supernet with random labels

bash ./scripts-search/algos/train_supernet.sh cifar10 0 1

3)evolution search with angle

bash ./scripts-search/algos/evolution_search_with_angle.sh cifar10 0 1

4)calculate correlation

bash ./scripts-search/algos/cal_correlation.sh cifar10 0 1
  • RLNAS in DARTS search space

1)enter the work directory

cd darts_search_space

search architecture on CIFAR-10

cd cifar10/rlnas/

or search architecture on ImageNet

cd imagenet/rlnas/

2)train supernet with random labels

cd train_supernet
bash run_train.sh

3)evolution search with angle

cd evolution_search
cp ../train_supernet/models/checkpoint_epoch_50.pth.tar ./model_and_data/
cp ../train_supernet/models/checkpoint_epoch_0.pth.tar ./model_and_data/
bash run_server.sh
bash run_test.sh

4)architeture evaluation

cd retrain_architetcure

add searched architecture to genotypes.py

bash run_retrain.sh
  • RLNAS in MobileNet search space

The conduct commands are almost the same steps like RLNAS in DARTS search space, excepth that you need run 'bash run_generate_flops_lookup_table.sh' before evolution search.

Note: setup a server for the distributed search

tmux new -s mq_server
sudo apt update
sudo apt install rabbitmq-server
sudo service rabbitmq-server start
sudo rabbitmqctl add_user test test
sudo rabbitmqctl set_permissions -p / test '.*' '.*' '.*'

Before search, please modify host and username in the config file evolution_search/config.py.

Citation

If you find that this project helps your research, please consider citing some of the following papers:

@article{zhang2021neural,
  title={Neural Architecture Search with Random Labels},
  author={Zhang, Xuanyang and Hou, Pengfei and Zhang, Xiangyu and Sun, Jian},
  booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
  year={2021}
}
@inproceedings{hu2020angle,
  title={Angle-based search space shrinking for neural architecture search},
  author={Hu, Yiming and Liang, Yuding and Guo, Zichao and Wan, Ruosi and Zhang, Xiangyu and Wei, Yichen and Gu, Qingyi and Sun, Jian},
  booktitle={European Conference on Computer Vision},
  pages={119--134},
  year={2020},
  organization={Springer}
}
@inproceedings{guo2020single,
  title={Single path one-shot neural architecture search with uniform sampling},
  author={Guo, Zichao and Zhang, Xiangyu and Mu, Haoyuan and Heng, Wen and Liu, Zechun and Wei, Yichen and Sun, Jian},
  booktitle={European Conference on Computer Vision},
  pages={544--560},
  year={2020},
  organization={Springer}
}
You might also like...
Official implementation of  Rethinking Graph Neural Architecture Search from Message-passing (CVPR2021)
Official implementation of Rethinking Graph Neural Architecture Search from Message-passing (CVPR2021)

Rethinking Graph Neural Architecture Search from Message-passing Intro The GNAS can automatically learn better architecture with the optimal depth of

[CVPR 2022] Semi-Supervised Semantic Segmentation Using Unreliable Pseudo-Labels
[CVPR 2022] Semi-Supervised Semantic Segmentation Using Unreliable Pseudo-Labels

Using Unreliable Pseudo Labels Official PyTorch implementation of Semi-Supervised Semantic Segmentation Using Unreliable Pseudo Labels, CVPR 2022. Ple

Official pytorch implementation of paper "Inception Convolution with Efficient Dilation Search" (CVPR 2021 Oral).

IC-Conv This repository is an official implementation of the paper Inception Convolution with Efficient Dilation Search. Getting Started Download Imag

Deep Image Search is an AI-based image search engine that includes deep transfor learning features Extraction and tree-based vectorized search.
Deep Image Search is an AI-based image search engine that includes deep transfor learning features Extraction and tree-based vectorized search.

Deep Image Search - AI-Based Image Search Engine Deep Image Search is an AI-based image search engine that includes deep transfer learning features Ex

BossNAS: Exploring Hybrid CNN-transformers with Block-wisely Self-supervised Neural Architecture Search
BossNAS: Exploring Hybrid CNN-transformers with Block-wisely Self-supervised Neural Architecture Search

BossNAS This repository contains PyTorch evaluation code, retraining code and pretrained models of our paper: BossNAS: Exploring Hybrid CNN-transforme

Deep Multimodal Neural Architecture Search
Deep Multimodal Neural Architecture Search

MMNas: Deep Multimodal Neural Architecture Search This repository corresponds to the PyTorch implementation of the MMnas for visual question answering

"NAS-Bench-301 and the Case for Surrogate Benchmarks for Neural Architecture Search".

NAS-Bench-301 This repository containts code for the paper: "NAS-Bench-301 and the Case for Surrogate Benchmarks for Neural Architecture Search". The

[CVPR21] LightTrack: Finding Lightweight Neural Network for Object Tracking via One-Shot Architecture Search
[CVPR21] LightTrack: Finding Lightweight Neural Network for Object Tracking via One-Shot Architecture Search

LightTrack: Finding Lightweight Neural Networks for Object Tracking via One-Shot Architecture Search The official implementation of the paper LightTra

Code release to accompany paper "Geometry-Aware Gradient Algorithms for Neural Architecture Search."

Geometry-Aware Gradient Algorithms for Neural Architecture Search This repository contains the code required to run the experiments for the DARTS sear

Comments
  • FLOPs and model size of the reported architecture in the mobilenet space.

    FLOPs and model size of the reported architecture in the mobilenet space.

    flops Hi, Thanks for providing mobilenet space code.

    I try to retrained your searched model in the mobilenet space, while I found the flops and model size is different from the paper.

    What should I do? Do I need to change the initial number of filters or other things?

    Best

    opened by anonymous-submission1991 0
Owner
null
noisy labels; missing labels; semi-supervised learning; entropy; uncertainty; robustness and generalisation.

ProSelfLC: CVPR 2021 ProSelfLC: Progressive Self Label Correction for Training Robust Deep Neural Networks For any specific discussion or potential fu

amos_xwang 57 Dec 4, 2022
Official PyTorch implementation of "Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets" (ICLR 2021)

Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets This is the official PyTorch implementation for the paper Rapid Neural A

null 48 Dec 26, 2022
Densely Connected Search Space for More Flexible Neural Architecture Search (CVPR2020)

DenseNAS The code of the CVPR2020 paper Densely Connected Search Space for More Flexible Neural Architecture Search. Neural architecture search (NAS)

Jamin Fong 291 Nov 18, 2022
Block-wisely Supervised Neural Architecture Search with Knowledge Distillation (CVPR 2020)

DNA This repository provides the code of our paper: Blockwisely Supervised Neural Architecture Search with Knowledge Distillation. Illustration of DNA

Changlin Li 215 Dec 19, 2022
PyTorch implementation of "Efficient Neural Architecture Search via Parameters Sharing"

Efficient Neural Architecture Search (ENAS) in PyTorch PyTorch implementation of Efficient Neural Architecture Search via Parameters Sharing. ENAS red

Taehoon Kim 2.6k Dec 31, 2022
BABEL: Bodies, Action and Behavior with English Labels [CVPR 2021]

BABEL is a large dataset with language labels describing the actions being performed in mocap sequences. BABEL labels about 43 hours of mocap sequences from AMASS [1] with action labels.

null 113 Dec 28, 2022
DeepHyper: Scalable Asynchronous Neural Architecture and Hyperparameter Search for Deep Neural Networks

What is DeepHyper? DeepHyper is a software package that uses learning, optimization, and parallel computing to automate the design and development of

DeepHyper Team 214 Jan 8, 2023
Model search is a framework that implements AutoML algorithms for model architecture search at scale

Model search (MS) is a framework that implements AutoML algorithms for model architecture search at scale. It aims to help researchers speed up their exploration process for finding the right model architecture for their classification problems (i.e., DNNs with different types of layers).

Google 3.2k Dec 31, 2022
[ICLR 2021] "Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective" by Wuyang Chen, Xinyu Gong, Zhangyang Wang

Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective [PDF] Wuyang Chen, Xinyu Gong, Zhangyang Wang In ICLR 2

VITA 156 Nov 28, 2022
[ICLR 2021] HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark

HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark Accepted as a spotlight paper at ICLR 2021. Table of content File structure Prerequi

null 72 Jan 3, 2023