Thank you for sharing this interesting work.
When I try to run the Colab example, the execution of 6th cell of the notebook resulted in the following error.
[[[0, 12]], [[16, 19]], [[23, 32]]]
/usr/local/lib/python3.7/dist-packages/transformers/modeling_utils.py:813: FutureWarning: The `device` argument is deprecated and will be removed in v5 of Transformers.
"The `device` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning
---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
[<ipython-input-6-d454bb231030>](https://localhost:8080/#) in <module>()
1 image = load('http://farm4.staticflickr.com/3693/9472793441_b7822c00de_z.jpg')
2 caption = 'bobble heads on top of the shelf'
----> 3 result, _ = glip_demo.run_on_web_image(image, caption, 0.5)
4 imshow(result, caption)
17 frames
[/content/GLIP/maskrcnn_benchmark/engine/predictor_glip.py](https://localhost:8080/#) in run_on_web_image(self, original_image, original_caption, thresh, custom_entity, alpha)
138 custom_entity = None,
139 alpha = 0.0):
--> 140 predictions = self.compute_prediction(original_image, original_caption, custom_entity)
141 top_predictions = self._post_process(predictions, thresh)
142
[/content/GLIP/maskrcnn_benchmark/engine/predictor_glip.py](https://localhost:8080/#) in compute_prediction(self, original_image, original_caption, custom_entity)
217 # compute predictions
218 with torch.no_grad():
--> 219 predictions = self.model(image_list, captions=[original_caption], positive_map=positive_map_label_to_token)
220 predictions = [o.to(self.cpu_device) for o in predictions]
221 print("inference time per image: {}".format(timeit.time.perf_counter() - tic))
[/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py](https://localhost:8080/#) in _call_impl(self, *input, **kwargs)
1049 if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks
1050 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1051 return forward_call(*input, **kwargs)
1052 # Do not call functions when jit is used
1053 full_backward_hooks, non_full_backward_hooks = [], []
[/content/GLIP/maskrcnn_benchmark/modeling/detector/generalized_vl_rcnn.py](https://localhost:8080/#) in forward(self, images, targets, captions, positive_map, greenlight_map)
283 else:
284 proposals, proposal_losses, fused_visual_features = self.rpn(images, visual_features, targets, language_dict_features, positive_map,
--> 285 captions, swint_feature_c4)
286 if self.roi_heads:
287 if self.cfg.MODEL.ROI_MASK_HEAD.PREDICTOR.startswith("VL"):
[/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py](https://localhost:8080/#) in _call_impl(self, *input, **kwargs)
1049 if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks
1050 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1051 return forward_call(*input, **kwargs)
1052 # Do not call functions when jit is used
1053 full_backward_hooks, non_full_backward_hooks = [], []
[/content/GLIP/maskrcnn_benchmark/modeling/rpn/vldyhead.py](https://localhost:8080/#) in forward(self, images, features, targets, language_dict_features, positive_map, captions, swint_feature_c4)
921 language_dict_features,
922 embedding,
--> 923 swint_feature_c4
924 )
925 anchors = self.anchor_generator(images, features)
[/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py](https://localhost:8080/#) in _call_impl(self, *input, **kwargs)
1049 if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks
1050 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1051 return forward_call(*input, **kwargs)
1052 # Do not call functions when jit is used
1053 full_backward_hooks, non_full_backward_hooks = [], []
[/content/GLIP/maskrcnn_benchmark/modeling/rpn/vldyhead.py](https://localhost:8080/#) in forward(self, x, language_dict_features, embedding, swint_feature_c4)
737 "lang": language_dict_features}
738
--> 739 dyhead_tower = self.dyhead_tower(feat_inputs)
740
741 # soft token
[/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py](https://localhost:8080/#) in _call_impl(self, *input, **kwargs)
1049 if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks
1050 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1051 return forward_call(*input, **kwargs)
1052 # Do not call functions when jit is used
1053 full_backward_hooks, non_full_backward_hooks = [], []
[/usr/local/lib/python3.7/dist-packages/torch/nn/modules/container.py](https://localhost:8080/#) in forward(self, input)
137 def forward(self, input):
138 for module in self:
--> 139 input = module(input)
140 return input
141
[/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py](https://localhost:8080/#) in _call_impl(self, *input, **kwargs)
1049 if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks
1050 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1051 return forward_call(*input, **kwargs)
1052 # Do not call functions when jit is used
1053 full_backward_hooks, non_full_backward_hooks = [], []
[/content/GLIP/maskrcnn_benchmark/modeling/rpn/vldyhead.py](https://localhost:8080/#) in forward(self, inputs)
203 conv_args = dict(offset=offset, mask=mask)
204
--> 205 temp_fea = [self.DyConv[1](feature, **conv_args)]
206
207 if level > 0:
[/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py](https://localhost:8080/#) in _call_impl(self, *input, **kwargs)
1049 if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks
1050 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1051 return forward_call(*input, **kwargs)
1052 # Do not call functions when jit is used
1053 full_backward_hooks, non_full_backward_hooks = [], []
[/content/GLIP/maskrcnn_benchmark/modeling/rpn/vldyhead.py](https://localhost:8080/#) in forward(self, input, **kwargs)
133
134 def forward(self, input, **kwargs):
--> 135 x = self.conv(input, **kwargs)
136 if self.bn:
137 x = self.bn(x)
[/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py](https://localhost:8080/#) in _call_impl(self, *input, **kwargs)
1049 if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks
1050 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1051 return forward_call(*input, **kwargs)
1052 # Do not call functions when jit is used
1053 full_backward_hooks, non_full_backward_hooks = [], []
[/usr/local/lib/python3.7/dist-packages/torch/cuda/amp/autocast_mode.py](https://localhost:8080/#) in decorate_fwd(*args, **kwargs)
217 return fwd(*_cast(args, cast_inputs), **_cast(kwargs, cast_inputs))
218 else:
--> 219 return fwd(*args, **kwargs)
220 return decorate_fwd
221
[/content/GLIP/maskrcnn_benchmark/layers/deform_conv.py](https://localhost:8080/#) in forward(self, input, offset, mask)
380 return modulated_deform_conv(
381 input, offset, mask, self.weight, self.bias, self.stride,
--> 382 self.padding, self.dilation, self.groups, self.deformable_groups)
383
384 def __repr__(self):
[/content/GLIP/maskrcnn_benchmark/layers/deform_conv.py](https://localhost:8080/#) in forward(ctx, input, offset, mask, weight, bias, stride, padding, dilation, groups, deformable_groups)
201 ctx.groups,
202 ctx.deformable_groups,
--> 203 ctx.with_bias
204 )
205 return output
RuntimeError: Not compiled with GPU support
Here is the GPU information that I used:
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 460.32.03 Driver Version: 460.32.03 CUDA Version: 11.2 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 Tesla T4 Off | 00000000:00:04.0 Off | 0 |
| N/A 51C P8 9W / 70W | 0MiB / 15109MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
| No running processes found |
+-----------------------------------------------------------------------------+
Any advice is appreciated.
Sincerely,