YOLaT-VectorGraphicsRecognition
This repository is the official PyTorch implementation of our NeurIPS-2021 paper: Recognizing Vector Graphics without Rasterization.
Environments
conda create -n your_env_name python=3.8
conda activate your_env_name
sh deepgcn_env_install.sh
YOLaT
1. Data Preparation
Floorplans
a) Download and unzip the Floorplans dataset to the dataset folder: data/FloorPlansGraph5_iter
b) Run the following scripts to prepare the dataset for training/inference.
python utils/svg_utils/build_graph_bbox.py
Diagrams
a) Download and unzip the Diagrams dataset to the dataset folder: data/diagrams
b) Run the following scripts to prepare the dataset for training/inference.
python utils/svg_utils/build_graph_bbox_diagram.py
2. Training & Inference
Floorplans
cd cad_recognition
CUDA_VISIBLE_DEVICES=0 python -u train.py --batch_size 4 --data_dir data/FloorPlansGraph5_iter --phase train --lr 2.5e-4 --lr_adjust_freq 9999999999999999999999999999999999999 --in_channels 5 --n_blocks 2 --n_blocks_out 2 --arch centernet3cc_rpn_gp_iter2 --graph bezier_cc_bb_iter --data_aug true --weight_decay 1e-5 --postname run182_2 --dropout 0.0 --do_mixup 0 --bbox_sampling_step 10
Diagrams
cd cad_recognition
CUDA_VISIBLE_DEVICES=0 python -u train.py --batch_size 4 --data_dir data/diagrams --phase train --lr 2.5e-4 --lr_adjust_freq 9999999999999999999999999999999999999 --in_channels 5 --n_blocks 2 --n_blocks_out 2 --arch centernet3cc_rpn_gp_iter2 --graph bezier_cc_bb_iter --data_aug true --weight_decay 1e-5 --postname run182_2 --dropout 0.0 --do_mixup 0 --bbox_sampling_step 5
Citation
@inproceedings{jiang2021recognizing,
title={{Recognizing Vector Graphics without Rasterization}},
author={Jiang, Xinyang and Liu, Lu and Shan, Caihua and Shen, Yifei and Dong, Xuanyi and Li, Dongsheng},
booktitle={Proceedings of Advances in Neural Information Processing Systems (NIPS)},
volume={34},
number={},
pages={},
year={2021}}