Deep Learning Based EDM Subgenre Classification using Mel-Spectrogram and Tempogram Features"

Overview

EDM-subgenre-classifier

This repository contains the code for "Deep Learning Based EDM Subgenre Classification using Mel-Spectrogram and Tempogram Features" arXiv:2110.08862, 2021. Wei-Han Hsu, Bo-Yu Chen, Yi-Hsuan Yang

Prerequisites

  • Python == 3.6.13
  • librosa == 0.8.1
  • torch == 1.3.0
  • numpy == 1.16.0
  • pandas == 1.1.2

Running the application

You could run

pip3 install -r requirements.txt

to make the part of installing dependencies.

Then run

python3 main.py

could predict the song's genre directly.

Here are the steps to run the code:

  • Step 1 : Preparing the audio (mp3, wav) and put it under "./data/audio/"
  • Step 2 : Extracting the feature, and the feature will under the ./data/{feature_folder}" (feature_folder : mel-spectrogram, fourier-tempogram and auto-tempogram)
  • Step 3 : Classifying the audio by feature
  • Step 4 : The result will be in the "./result.csv"
  • All the "step" could complete by main.py

We only put the "late-fusion model" in this repo.

Note

This project was revised from sota-music-tagging-models. Many thanks for all authors of the paper ("Evaluation of CNN-based Automatic Music Tagging Models", SMC 2020)

License


MIT License

Copyright (c) 2020 Music Technology Group, Universitat Pompeu Fabra. Code developed by Minz Won.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Contact

Please feel free to contact Wei-Han Hsu if you have any questions.

You might also like...
HiFi-GAN: High Fidelity Denoising and Dereverberation Based on Speech Deep Features in Adversarial Networks
HiFi-GAN: High Fidelity Denoising and Dereverberation Based on Speech Deep Features in Adversarial Networks

HiFiGAN Denoiser This is a Unofficial Pytorch implementation of the paper HiFi-GAN: High Fidelity Denoising and Dereverberation Based on Speech Deep F

Implement face detection, and age and gender classification, and emotion classification.
Implement face detection, and age and gender classification, and emotion classification.

YOLO Keras Face Detection Implement Face detection, and Age and Gender Classification, and Emotion Classification. (image from wider face dataset) Ove

Deep learning toolbox based on PyTorch for hyperspectral data classification.
Deep learning toolbox based on PyTorch for hyperspectral data classification.

Deep learning toolbox based on PyTorch for hyperspectral data classification.

Train a deep learning net with OpenStreetMap features and satellite imagery.
Train a deep learning net with OpenStreetMap features and satellite imagery.

DeepOSM Classify roads and features in satellite imagery, by training neural networks with OpenStreetMap (OSM) data. DeepOSM can: Download a chunk of

Image Classification - A research on image classification and auto insurance claim prediction, a systematic experiments on modeling techniques and approaches

A research on image classification and auto insurance claim prediction, a systematic experiments on modeling techniques and approaches

Dogs classification with Deep Metric Learning using some popular losses
Dogs classification with Deep Metric Learning using some popular losses

Tsinghua Dogs classification with Deep Metric Learning 1. Introduction Tsinghua Dogs dataset Tsinghua Dogs is a fine-grained classification dataset fo

Classification of EEG data using Deep Learning

Graduation-Project Classification of EEG data using Deep Learning Epilepsy is the most common neurological disease in the world. Epilepsy occurs as a

deep-table implements various state-of-the-art deep learning and self-supervised learning algorithms for tabular data using PyTorch.
deep-table implements various state-of-the-art deep learning and self-supervised learning algorithms for tabular data using PyTorch.

deep-table implements various state-of-the-art deep learning and self-supervised learning algorithms for tabular data using PyTorch.

Owner
null
Deep Image Search is an AI-based image search engine that includes deep transfor learning features Extraction and tree-based vectorized search.

Deep Image Search - AI-Based Image Search Engine Deep Image Search is an AI-based image search engine that includes deep transfer learning features Ex

null 139 Jan 1, 2023
UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation

UnivNet UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation. Training python train.py --c

Rishikesh (ऋषिकेश) 55 Dec 26, 2022
Code for the Interspeech 2021 paper "AST: Audio Spectrogram Transformer".

AST: Audio Spectrogram Transformer Introduction Citing Getting Started ESC-50 Recipe Speechcommands Recipe AudioSet Recipe Pretrained Models Contact I

Yuan Gong 603 Jan 7, 2023
Unofficial PyTorch Implementation of UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation

UnivNet UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation This is an unofficial PyTorch

MINDs Lab 170 Jan 4, 2023
Unofficial PyTorch Implementation of UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation

UnivNet UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation This is an unofficial PyTorch

MINDs Lab 54 Aug 30, 2021
DECAF: Deep Extreme Classification with Label Features

DECAF DECAF: Deep Extreme Classification with Label Features @InProceedings{Mittal21, author = "Mittal, A. and Dahiya, K. and Agrawal, S. and Sain

null 46 Nov 6, 2022
Static Features Classifier - A static features classifier for Point-Could clusters using an Attention-RNN model

Static Features Classifier This is a static features classifier for Point-Could

ABDALKARIM MOHTASIB 1 Jan 25, 2022
Hl classification bc - A Network-Based High-Level Data Classification Algorithm Using Betweenness Centrality

A Network-Based High-Level Data Classification Algorithm Using Betweenness Centr

Esteban Vilca 3 Dec 1, 2022
improvement of CLIP features over the traditional resnet features on the visual question answering, image captioning, navigation and visual entailment tasks.

CLIP-ViL In our paper "How Much Can CLIP Benefit Vision-and-Language Tasks?", we show the improvement of CLIP features over the traditional resnet fea

null 310 Dec 28, 2022
Deep learning (neural network) based remote photoplethysmography: how to extract pulse signal from video using deep learning tools

Deep-rPPG: Camera-based pulse estimation using deep learning tools Deep learning (neural network) based remote photoplethysmography: how to extract pu

Terbe Dániel 138 Dec 17, 2022