Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs
This repository is the implementation of SELAR.
Dasol Hwang* , Jinyoung Park* , Sunyoung Kwon, Kyung-min Kim, Jung-Woo Ha, Hyunwoo J. Kim, Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs, In Advanced in Neural Information Processing Systems (NeurIPS 2020).
Data Preprocessing
We used datasets from KGNN-LS and RippleNet for link prediction. Download meta-paths label (meta_labels/
) from this link.
-
data/music/
ratings_final.npy
: preprocessed rating file released by KGNN-LS;kg_final.npy
: knowledge graph file;meta_labels/
pos_meta{}_{}.pickle
: meta-path positive label for auxiliary taskneg_meta{}_{}.pickle
: meta-path negative label for auxiliary task
-
data/book/
ratings_final.npy
: preprocessed rating file released by RippleNet;kg_final.npy
: knowledge graph file;meta_labels/
pos_meta{}_{}.pickle
: meta-path positive label for auxiliary taskneg_meta{}_{}.pickle
: meta-path negative label for auxiliary task
Required packages
A list of dependencies will need to be installed in order to run the code. We provide the dependency yaml file (env.yml)
$ conda env create -f env.yml
Running the code
# check optional arguments [-h]
$ python main_music.py
$ python main_book.py
Overview of the results of link prediction
Last-FM (Music)
Base GNNs | Vanilla | w/o MP | w/ MP | SELAR | SELAR+Hint |
---|---|---|---|---|---|
GCN | 0.7963 | 0.7899 | 0.8235 | 0.8296 | 0.8121 |
GAT | 0.8115 | 0.8115 | 0.8263 | 0.8294 | 0.8302 |
GIN | 0.8199 | 0.8217 | 0.8242 | 0.8361 | 0.8350 |
SGC | 0.7703 | 0.7766 | 0.7718 | 0.7827 | 0.7975 |
GTN | 0.7836 | 0.7744 | 0.7865 | 0.7988 | 0.8067 |
Book-Crossing (Book)
Base GNNs | Vanilla | w/o MP | w/ MP | SELAR | SELAR+Hint |
---|---|---|---|---|---|
GCN | 0.7039 | 0.7031 | 0.7110 | 0.7182 | 0.7208 |
GAT | 0.6891 | 0.6968 | 0.7075 | 0.7345 | 0.7360 |
GIN | 0.6979 | 0.7210 | 0.7338 | 0.7526 | 0.7513 |
SGC | 0.6860 | 0.6808 | 0.6792 | 0.6902 | 0.6926 |
GTN | 0.6732 | 0.6758 | 0.6724 | 0.6858 | 0.6850 |
Citation
@inproceedings{NEURIPS2020_74de5f91,
author = {Hwang, Dasol and Park, Jinyoung and Kwon, Sunyoung and Kim, KyungMin and Ha, Jung-Woo and Kim, Hyunwoo J},
booktitle = {Advances in Neural Information Processing Systems},
editor = {H. Larochelle and M. Ranzato and R. Hadsell and M. F. Balcan and H. Lin},
pages = {10294--10305},
publisher = {Curran Associates, Inc.},
title = {Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs},
url = {https://proceedings.neurips.cc/paper/2020/file/74de5f915765ea59816e770a8e686f38-Paper.pdf},
volume = {33},
year = {2020}
}
License
Copyright (c) 2020-present NAVER Corp. and Korea University