Keras implementation of the GNM model in paper ’Graph-Based Semi-Supervised Learning with Nonignorable Nonresponses‘

Overview

Graph-based joint model with Nonignorable Missingness (GNM)

This is a Keras implementation of the GNM model in paper ’Graph-Based Semi-Supervised Learning with Nonignorable Nonresponses‘ by Fan Zhou et al (NeurIPS 2019).

Acknowledgements

This GNM model supports the architecture of

Graph Convolution Network (Thomas N. Kipf, Max Welling ICLR 2017), Semi-Supervised Classification with Graph Convolutional Networks,

Graph Attention Networks (Veličković et al., ICLR 2018): Graph Attention Networks

We build our pipeline based on Keras Graph Attention Network and Keras Graph Convolution Network.

You should cite these papers if you use any of this code for your research:

@article{kipf2016semi,
  title={Semi-supervised classification with graph convolutional networks},
  author={Kipf, Thomas N and Welling, Max},
  journal={arXiv preprint arXiv:1609.02907},
  year={2016}
}

@article{
  velickovic2018graph,
  title="{Graph Attention Networks}",
  author={Veli{\v{c}}kovi{\'{c}}, Petar and Cucurull, Guillem and Casanova, Arantxa and Romero, Adriana and Li{\`{o}}, Pietro and Bengio, Yoshua},
  journal={International Conference on Learning Representations},
  year={2018},
  url={https://openreview.net/forum?id=rJXMpikCZ},
  note={Accepted as poster},
}

I copied the code in utils.py almost verbatim from this repo by Thomas Kipf and add some new codes such as evaluation model prediction performance split training/validation/test data.

Disclaimer

I do not own any rights to the datasets distributed with this code, but they are publicly available at the following links:

Replicating experiments

To replicate the simple setup of the real analysis in the paper, just run:

$ python sim_cora_GCN.py

and

$ python sim_cora_GAT.py

for the Cora dataset with ‘lambda = 2’ or

$ python sim_citeseer_GAT.py

and

$ python sim_citeseer_GCN.py

for the Citeseer dataset.

To replicate the complicated setup of the real analysis in the paper, you may try

$ python real_cora.py
You might also like...
A weakly-supervised scene graph generation codebase. The implementation of our CVPR2021 paper ``Linguistic Structures as Weak Supervision for Visual Scene Graph Generation''
A weakly-supervised scene graph generation codebase. The implementation of our CVPR2021 paper ``Linguistic Structures as Weak Supervision for Visual Scene Graph Generation''

README.md shall be finished soon. WSSGG 0 Overview 1 Installation 1.1 Faster-RCNN 1.2 Language Parser 1.3 GloVe Embeddings 2 Settings 2.1 VG-GT-Graph

Hybrid CenterNet - Hybrid-supervised object detection / Weakly semi-supervised object detection
Hybrid CenterNet - Hybrid-supervised object detection / Weakly semi-supervised object detection

Hybrid-Supervised Object Detection System Object detection system trained by hybrid-supervision/weakly semi-supervision (HSOD/WSSOD): This project is

Semi-Supervised Graph Prototypical Networks for Hyperspectral Image Classification, IGARSS, 2021.
Semi-Supervised Graph Prototypical Networks for Hyperspectral Image Classification, IGARSS, 2021.

Semi-Supervised Graph Prototypical Networks for Hyperspectral Image Classification, IGARSS, 2021. Bobo Xi, Jiaojiao Li, Yunsong Li and Qian Du. Code f

Wanli Li and Tieyun Qian: Exploit a Multi-head Reference Graph for Semi-supervised Relation Extraction, IJCNN 2021

MRefG Wanli Li and Tieyun Qian: "Exploit a Multi-head Reference Graph for Semi-supervised Relation Extraction", IJCNN 2021 1. Requirements To reproduc

This is an implementation of Googles Yogi-Optimizer in Keras (tf.keras)

Yogi-Optimizer_Keras This is an implementation of Googles Yogi-Optimizer in Keras (tf.keras) The NeurIPS-Paper can be found here: http://papers.nips.c

Source codes for the paper "Local Additivity Based Data Augmentation for Semi-supervised NER"

LADA This repo contains codes for the following paper: Jiaao Chen*, Zhenghui Wang*, Ran Tian, Zichao Yang, Diyi Yang: Local Additivity Based Data Augm

Official PyTorch implementation for paper Context Matters: Graph-based Self-supervised Representation Learning for Medical Images
Official PyTorch implementation for paper Context Matters: Graph-based Self-supervised Representation Learning for Medical Images

Context Matters: Graph-based Self-supervised Representation Learning for Medical Images Official PyTorch implementation for paper Context Matters: Gra

The code for our paper Semi-Supervised Learning with Multi-Head Co-Training
The code for our paper Semi-Supervised Learning with Multi-Head Co-Training

Semi-Supervised Learning with Multi-Head Co-Training (PyTorch) Abstract Co-training, extended from self-training, is one of the frameworks for semi-su

Semi-supervised Representation Learning for Remote Sensing Image Classification Based on Generative Adversarial Networks

SSRL-for-image-classification Semi-supervised Representation Learning for Remote Sensing Image Classification Based on Generative Adversarial Networks

Comments
  • CAN'T RUN NORMALLY!!!

    CAN'T RUN NORMALLY!!!

    While I am running the code sim_citeseer_GCN.py, it says:

    ValueError: Only provide the `shape` OR `batch_input_shape` argument to Input, not both at the same time.
    

    I don't know where is wrong. BTW: my software is Keras 2.4.3 tensorflow 2.4.0 Can anyone help me?

    opened by MoonTracer732 0
  • Can this code be directly applied to multi-classification?

    Can this code be directly applied to multi-classification?

    I find it's hard to apply the code to multi-classification directly. If I want to apply the code to multi-class setting, where should I modify? Thank you.

    opened by googlebaba 0
Owner
Fan Zhou
Fan Zhou
This is the repository for the NeurIPS-21 paper [Contrastive Graph Poisson Networks: Semi-Supervised Learning with Extremely Limited Labels].

CGPN This is the repository for the NeurIPS-21 paper [Contrastive Graph Poisson Networks: Semi-Supervised Learning with Extremely Limited Labels]. Req

null 10 Sep 12, 2022
Project looking into use of autoencoder for semi-supervised learning and comparing data requirements compared to supervised learning.

Project looking into use of autoencoder for semi-supervised learning and comparing data requirements compared to supervised learning.

Tom-R.T.Kvalvaag 2 Dec 17, 2021
UniMoCo: Unsupervised, Semi-Supervised and Full-Supervised Visual Representation Learning

UniMoCo: Unsupervised, Semi-Supervised and Full-Supervised Visual Representation Learning This is the official PyTorch implementation for UniMoCo pape

dddzg 49 Jan 2, 2023
Code for CoMatch: Semi-supervised Learning with Contrastive Graph Regularization

CoMatch: Semi-supervised Learning with Contrastive Graph Regularization (Salesforce Research) This is a PyTorch implementation of the CoMatch paper [B

Salesforce 107 Dec 14, 2022
Keras udrl - Keras implementation of Upside Down Reinforcement Learning

keras_udrl Keras implementation of Upside Down Reinforcement Learning This is me

Eder Santana 7 Jan 24, 2022
PyTorch code for the paper: FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning

FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning This is the PyTorch implementation of our paper: FeatMatch: Feature-Based Augmentat

null 43 Nov 19, 2022
CVPR2022 paper "Dense Learning based Semi-Supervised Object Detection"

[CVPR2022] DSL: Dense Learning based Semi-Supervised Object Detection DSL is the first work on Anchor-Free detector for Semi-Supervised Object Detecti

Bhchen 69 Dec 8, 2022
The implementation of the algorithm in the paper "Safe Deep Semi-Supervised Learning for Unseen-Class Unlabeled Data" published in ICML 2020.

DS3L This is the code for paper "Safe Deep Semi-Supervised Learning for Unseen-Class Unlabeled Data" published in ICML 2020. Setups The code is implem

Guolz 36 Oct 19, 2022
CoSMA: Convolutional Semi-Regular Mesh Autoencoder. From Paper "Mesh Convolutional Autoencoder for Semi-Regular Meshes of Different Sizes"

Mesh Convolutional Autoencoder for Semi-Regular Meshes of Different Sizes Implementation of CoSMA: Convolutional Semi-Regular Mesh Autoencoder arXiv p

Fraunhofer SCAI 10 Oct 11, 2022
code for paper "Not All Unlabeled Data are Equal: Learning to Weight Data in Semi-supervised Learning" by Zhongzheng Ren*, Raymond A. Yeh*, Alexander G. Schwing.

Not All Unlabeled Data are Equal: Learning to Weight Data in Semi-supervised Learning Overview This code is for paper: Not All Unlabeled Data are Equa

Jason Ren 22 Nov 23, 2022