fastai_minima
A mimal version of fastai with the barebones needed to work with Pytorch
#all_slow
Install
pip install fastai_minima
How to use
This library is designed to bring in only the minimal needed from fastai to work with raw Pytorch. This includes:
- Learner
- Callbacks
- Optimizer
- DataLoaders (but not the
DataBlock
) - Metrics
Below we can find a very minimal example based off my Pytorch to fastai, Bridging the Gap article:
import torch
import torchvision
import torchvision.transforms as transforms
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5))])
dset_train = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
dset_test = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(dset_train, batch_size=4,
shuffle=True, num_workers=2)
testloader = torch.utils.data.DataLoader(dset_test, batch_size=4,
shuffle=False, num_workers=2)
Files already downloaded and verified
Files already downloaded and verified
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
criterion = nn.CrossEntropyLoss()
from torch import optim
from fastai_minima.optimizer import OptimWrapper
from fastai_minima.learner import Learner, DataLoaders
from fastai_minima.callback.training import CudaCallback, ProgressCallback
def opt_func(params, **kwargs): return OptimWrapper(optim.SGD(params, **kwargs))
dls = DataLoaders(trainloader, testloader)
learn = Learner(dls, Net(), loss_func=criterion, opt_func=opt_func)
# To use the GPU, do
# learn = Learner(dls, Net(), loss_func=criterion, opt_func=opt_func, cbs=[CudaCallback()])
learn.fit(2, lr=0.001)
epoch | train_loss | valid_loss | time |
---|---|---|---|
0 | 2.269467 | 2.266472 | 01:20 |
1 | 1.876898 | 1.879593 | 01:21 |
/mnt/d/lib/python3.7/site-packages/torch/autograd/__init__.py:132: UserWarning: CUDA initialization: Found no NVIDIA driver on your system. Please check that you have an NVIDIA GPU and installed a driver from http://www.nvidia.com/Download/index.aspx (Triggered internally at /pytorch/c10/cuda/CUDAFunctions.cpp:100.)
allow_unreachable=True) # allow_unreachable flag
If you want to do differential learning rates, when creating your splitter
to pass into fastai's Learner
you should utilize the convert_params
to make it compatable with Pytorch Optimizers:
def splitter(m): return convert_params([[m.a], [m.b]])
learn = Learner(..., splitter=splitter)