The World of an Octopus: How Reporting Bias Influences a Language Model's Perception of Color

Related tags

Deep Learning coda
Overview

The World of an Octopus: How Reporting Bias Influences a Language Model's Perception of Color

Overview

Code and dataset for The World of an Octopus: How Reporting Bias Influences a Language Model's Perception of Color.

This repository is roughly split into 2 parts:

  • probing: The probing implementations, including code for generating CoDa.
  • mturk-survey: Instruction pages and used for crowdsourcing annotations.

How to use

Using CoDa

If you'd like to use CoDa, we highly recommend using the version hosted on the Huggingface Hub as it requires no additional dependencies.

from datasets import load_dataset

ds = load_dataset('corypaik/coda')

You can find more details about how to use Huggingface Datasets here.

Running experiments

This repository is developed and tested on linux systems and uses Bazel. If you are on other platforms, you might consider running Bazel in a docker container. If you'd like more guidance on this, please open an Issue on GitHub.

First, clone the project

# clone project
git clone https://github.com/nala-cub/coda

# goto project
cd coda

You can run the specific tasks as:

# run zeroshot
bazel run //projects/coda/probing/zeroshot
# representation probing
bazel run //projects/coda/probing/representations
# ngrams
bazel run //projects/coda/probing/ngram_stats
# generate dataset from annotations (relative to workspace root)
bazel run //projects/coda/probing/dataset:create_dataset -- \
  --coda_ds_export_dir=<export_dir>

To see help for any of the commands, use:

bazel run <target> -- --help
# for example:
# bazel run //projects/coda/probing/zeroshot -- --help

Annotation Instructions

Annotations were collected using an Angular app on Firebase. The included files contain all instructions, but not the app itself. If you're interested in the latter please open an issue on GitHub.

Citation

If this code was useful, please cite the paper:

@misc{paik2021world,
      title={The World of an Octopus: How Reporting Bias Influences a Language Model's Perception of Color},
      author={Cory Paik and Stéphane Aroca-Ouellette and Alessandro Roncone and Katharina Kann},
      year={2021},
      eprint={2110.08182},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

License

CoDa is licensed under the Apache 2.0 license. The text of the license can be found here.

You might also like...
Submission to Twitter's algorithmic bias bounty challenge
Submission to Twitter's algorithmic bias bounty challenge

Twitter Ethics Challenge: Pixel Perfect Submission to Twitter's algorithmic bias bounty challenge, by Travis Hoppe (@metasemantic). Abstract We build

TorchDistiller - a collection of the open source pytorch code for knowledge distillation, especially for the perception tasks, including semantic segmentation, depth estimation, object detection and instance segmentation.

This project is a collection of the open source pytorch code for knowledge distillation, especially for the perception tasks, including semantic segmentation, depth estimation, object detection and instance segmentation.

Certifiable Outlier-Robust Geometric Perception

Certifiable Outlier-Robust Geometric Perception About This repository holds the implementation for certifiably solving outlier-robust geometric percep

Repository for the Bias Benchmark for QA dataset.

BBQ Repository for the Bias Benchmark for QA dataset. Authors: Alicia Parrish, Angelica Chen, Nikita Nangia, Vishakh Padmakumar, Jason Phang, Jana Tho

Source code and notebooks to reproduce experiments and benchmarks on Bias Faces in the Wild (BFW).
Source code and notebooks to reproduce experiments and benchmarks on Bias Faces in the Wild (BFW).

Face Recognition: Too Bias, or Not Too Bias? Robinson, Joseph P., Gennady Livitz, Yann Henon, Can Qin, Yun Fu, and Samson Timoner. "Face recognition:

PyTorch implementation for the visual prior component (i.e. perception module) of the Visually Grounded Physics Learner [Li et al., 2020].
PyTorch implementation for the visual prior component (i.e. perception module) of the Visually Grounded Physics Learner [Li et al., 2020].

VGPL-Visual-Prior PyTorch implementation for the visual prior component (i.e. perception module) of the Visually Grounded Physics Learner (VGPL). Give

Code for "The Box Size Confidence Bias Harms Your Object Detector"

The Box Size Confidence Bias Harms Your Object Detector - Code Disclaimer: This repository is for research purposes only. It is designed to maintain r

Implementation for
Implementation for "Domain-Specific Bias Filtering for Single Labeled Domain Generalization"

DSBF Introduction This repository contains the implementation code for paper: Domain-Specific Bias Filtering for Single Labeled Domain Generalization

Autonomous Perception: 3D Object Detection with Complex-YOLO
Autonomous Perception: 3D Object Detection with Complex-YOLO

Autonomous Perception: 3D Object Detection with Complex-YOLO LiDAR object detect

Comments
  • Color names associated with the distribution?

    Color names associated with the distribution?

    Hey, I have downloaded the CoDa dataset from HF.

    I want to know the color label names asssociated with the color distribution in the label column.

    Thanks!

    opened by Axe-- 1
  • NonMatchingChecksumError when loading dataset in HuggingFace

    NonMatchingChecksumError when loading dataset in HuggingFace

    Hello!

    I'm getting the following error when trying to load the dataset in huggingface datasets

    NonMatchingChecksumError: Checksums didn't match for dataset source files:
    ['https://huggingface.co/datasets/corypaik/coda/resolve/main/data/default_train.jsonl', 'https://huggingface.co/datasets/corypaik/coda/resolve/main/data/default_validation.jsonl', 'https://huggingface.co/datasets/corypaik/coda/resolve/main/data/default_test.jsonl']
    

    Colab to reproduce: https://colab.research.google.com/drive/1FRxDKyW4E6XUxYTCzGKKbvsCTHGK2KAO?usp=sharing

    Is this expected?

    Thanks!

    opened by cfierro94 1
[CVPR 2021] Counterfactual VQA: A Cause-Effect Look at Language Bias

Counterfactual VQA (CF-VQA) This repository is the Pytorch implementation of our paper "Counterfactual VQA: A Cause-Effect Look at Language Bias" in C

Yulei Niu 94 Dec 3, 2022
Reporting and Visualization for Hazardous Events

Reporting and Visualization for Hazardous Events

Jv Kyle Eclarin 2 Oct 3, 2021
PaddleRobotics is an open-source algorithm library for robots based on Paddle, including open-source parts such as human-robot interaction, complex motion control, environment perception, SLAM positioning, and navigation.

简体中文 | English PaddleRobotics paddleRobotics是基于paddle的机器人开源算法库集,包括人机交互、复杂运动控制、环境感知、slam定位导航等开源算法部分。 人机交互 主动多模交互技术TFVT-HRI 主动多模交互技术是通过视觉、语音、触摸传感器等输入机器人

null 185 Dec 26, 2022
Implementation of Perceiver, General Perception with Iterative Attention, in Pytorch

Perceiver - Pytorch Implementation of Perceiver, General Perception with Iterative Attention, in Pytorch Install $ pip install perceiver-pytorch Usage

Phil Wang 876 Dec 29, 2022
Implementation of Perceiver, General Perception with Iterative Attention in TensorFlow

Perceiver This Python package implements Perceiver: General Perception with Iterative Attention by Andrew Jaegle in TensorFlow. This model builds on t

Rishit Dagli 84 Oct 15, 2022
Official source code to CVPR'20 paper, "When2com: Multi-Agent Perception via Communication Graph Grouping"

When2com: Multi-Agent Perception via Communication Graph Grouping This is the PyTorch implementation of our paper: When2com: Multi-Agent Perception vi

null 34 Nov 9, 2022
Code for Towards Streaming Perception (ECCV 2020) :car:

sAP — Code for Towards Streaming Perception ECCV Best Paper Honorable Mention Award Feb 2021: Announcing the Streaming Perception Challenge (CVPR 2021

Martin Li 85 Dec 22, 2022
A pytorch implementation of MBNET: MOS PREDICTION FOR SYNTHESIZED SPEECH WITH MEAN-BIAS NETWORK

Pytorch-MBNet A pytorch implementation of MBNET: MOS PREDICTION FOR SYNTHESIZED SPEECH WITH MEAN-BIAS NETWORK Training To train a new model, please ru

null 46 Dec 28, 2022
Project page of the paper 'Analyzing Perception-Distortion Tradeoff using Enhanced Perceptual Super-resolution Network' (ECCVW 2018)

EPSR (Enhanced Perceptual Super-resolution Network) paper This repo provides the test code, pretrained models, and results on benchmark datasets of ou

Subeesh Vasu 78 Nov 19, 2022
This repository contains the code for "Self-Diagnosis and Self-Debiasing: A Proposal for Reducing Corpus-Based Bias in NLP".

Self-Diagnosis and Self-Debiasing This repository contains the source code for Self-Diagnosis and Self-Debiasing: A Proposal for Reducing Corpus-Based

Timo Schick 62 Dec 12, 2022