Real-time ground filtering algorithm of cloud points acquired using Terrestrial Laser Scanner (TLS)

Overview

Real-time ground filtering algorithm of cloud points acquired using Terrestrial Laser Scanner (TLS)

This repository contains tools to simulate the ground filtering process of a registered point cloud. The repository contain two filtering methods. The first method uses normal-vector, and fit to plane. The second method utilizes voxel adjacency, and fit to plane. This repository contains the code to reproduce the results presented in the paper following paper:

*Diaz, Nelson, et al. "Real-time ground filtering algorithm of cloud points acquired using Terrestrial Laser Scanner (TLS)," Accepted to International Journal of Applied Earth Observation and Geoinformation, 2021.

If you use this code, please consider citing our paper with the following Bibtex code:

@article{DIAZ2021102629,
title = {Real-time ground filtering algorithm of cloud points acquired using Terrestrial Laser Scanner (TLS)},
journal = {International Journal of Applied Earth Observation and Geoinformation},
volume = {105},
pages = {102629},
year = {2021},
issn = {0303-2434},
doi = {https://doi.org/10.1016/j.jag.2021.102629},
url = {https://www.sciencedirect.com/science/article/pii/S0303243421003366},
author = {Nelson Diaz and Omar Gallo and Jhon Caceres and Hernan Porras},
keywords = {Ground filter, Normal vector, PCA, TLS, Voxel},
abstract = {3D modeling based on point clouds requires ground-filtering algorithms that separate ground from non-ground objects. This study presents two ground filtering algorithms. The first one is based on normal vectors. It has two variants depending on the procedure to compute the k-nearest neighbors. The second algorithm is based on transforming the cloud points into a voxel structure. To evaluate them, the two algorithms are compared according to their execution time, effectiveness and efficiency. Results show that the ground filtering algorithm based on the voxel structure is faster in terms of execution time, effectiveness, and efficiency than the normal vector ground filtering.}
}

Introduction

The software allows simulating the ground filtering process in point clouds using machine learning techniques. In particular, this repository contains the algorithms and functions to identify points corresponding to the ground from a registered point cloud.

Requirements

This module requires the following datasets Ajaccio_2.ply, Ajaccio_57.ply y dijon_9.ply, which may be downloaded from the following link. In addition, scans with groundtruth are available in link.

The datasets may be included in the folder dataset.

  • Recommended modules

It is recommended to install the toolbox of Computer Vision (TCV). TCV contains the point cloud processing with plenty of functions and algorithms for the processing of point clouds.

Installation

To run the code, use the function MainNormal.m that computes principal component analysis for each point and its corresponding K-nearest neighbors, then a Naive Bayes classifier improves the ground filtering. In the last stage, the points are adjusted to a plane, discarding the farthest points. The second algorithm runs with the function MainVoxel.m that. The algorithm joints the points into voxels to reduce the computation time of the nearest neighbor. The algorithm discards the distant voxels with height thresholding, and then the remaining points are adjusted to a plane.

Configuration

The tools are developed in Matlab R2019b.

You might also like...
Official Repo for Ground-aware Monocular 3D Object Detection for Autonomous Driving

Visual 3D Detection Package: This repo aims to provide flexible and reproducible visual 3D detection on KITTI dataset. We expect scripts starting from

[WACV 2020] Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints

Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints Official implementation for Reducing Footskate in Human Motion Recon

PointCloud Annotation Tools, support to label object bound box, ground, lane and kerb
PointCloud Annotation Tools, support to label object bound box, ground, lane and kerb

PointCloud Annotation Tools, support to label object bound box, ground, lane and kerb

Face Synthetics dataset is a collection of diverse synthetic face images with ground truth labels.
Face Synthetics dataset is a collection of diverse synthetic face images with ground truth labels.

The Face Synthetics dataset Face Synthetics dataset is a collection of diverse synthetic face images with ground truth labels. It was introduced in ou

Autonomous Ground Vehicle Navigation and Control Simulation Examples in Python

Autonomous Ground Vehicle Navigation and Control Simulation Examples in Python THIS PROJECT IS CURRENTLY A WORK IN PROGRESS AND THUS THIS REPOSITORY I

ObjectDrawer-ToolBox: a graphical image annotation tool to generate ground plane masks for a 3D object reconstruction system
ObjectDrawer-ToolBox: a graphical image annotation tool to generate ground plane masks for a 3D object reconstruction system

ObjectDrawer-ToolBox is a graphical image annotation tool to generate ground plane masks for a 3D object reconstruction system, Object Drawer.

TCNN Temporal convolutional neural network for real-time speech enhancement in the time domain
TCNN Temporal convolutional neural network for real-time speech enhancement in the time domain

TCNN Pandey A, Wang D L. TCNN: Temporal convolutional neural network for real-time speech enhancement in the time domain[C]//ICASSP 2019-2019 IEEE Int

Point Cloud Denoising input segmentation output raw point-cloud valid/clear fog rain de-noised Abstract Lidar sensors are frequently used in environme
Point Cloud Denoising input segmentation output raw point-cloud valid/clear fog rain de-noised Abstract Lidar sensors are frequently used in environme

Point Cloud Denoising input segmentation output raw point-cloud valid/clear fog rain de-noised Abstract Lidar sensors are frequently used in environme

Owner
He received a Ph.D. in Engineering in 2020 from the Universidad Industrial de Santander, Colombia.
null
Thermal Control of Laser Powder Bed Fusion using Deep Reinforcement Learning

This repository is the implementation of the paper "Thermal Control of Laser Powder Bed Fusion Using Deep Reinforcement Learning", linked here. The project makes use of the Deep Reinforcement Library stable-baselines3 to derive a control policy that maximizes melt pool depth consistency.

BaratiLab 11 Dec 27, 2022
Point Cloud Registration using Representative Overlapping Points.

Point Cloud Registration using Representative Overlapping Points (ROPNet) Abstract 3D point cloud registration is a fundamental task in robotics and c

ZhuLifa 36 Dec 16, 2022
Generalized hybrid model for mode-locked laser diodes with an extended passive cavity

GenHybridMLLmodel Generalized hybrid model for mode-locked laser diodes with an extended passive cavity This hybrid simulation strategy combines a tra

Stijn Cuyvers 3 Sep 21, 2022
Simulation of self-focusing of laser beams in condensed media

What is it? Program for scientific research, which allows to simulate the phenomenon of self-focusing of different laser beams (including Gaussian, ri

Evgeny Vasilyev 13 Dec 24, 2022
Real-Time-Student-Attendence-System - Real Time Student Attendence System

Real-Time-Student-Attendence-System The Student Attendance Management System Pro

Rounak Das 1 Feb 15, 2022
Developed an optimized algorithm which finds the most optimal path between 2 points in a 3D Maze using various AI search techniques like BFS, DFS, UCS, Greedy BFS and A*

Developed an optimized algorithm which finds the most optimal path between 2 points in a 3D Maze using various AI search techniques like BFS, DFS, UCS, Greedy BFS and A*. The algorithm was extremely optimal running in ~15s to ~30s for search spaces as big as 10000000 nodes where a set of 18 actions could be performed at each node in the 3D Maze.

null 1 Mar 28, 2022
Given a 2D triangle mesh, we could randomly generate cloud points that fill in the triangle mesh

generate_cloud_points Given a 2D triangle mesh, we could randomly generate cloud points that fill in the triangle mesh. Run python disp_mesh.py Or you

Peng Yu 2 Dec 24, 2021
Using LSTM to detect spoofing attacks in an Air-Ground network

Using LSTM to detect spoofing attacks in an Air-Ground network Specifications IDE: Spider Packages: Tensorflow 2.1.0 Keras NumPy Scikit-learn Matplotl

Tiep M. H. 1 Nov 20, 2021
Real Time Object Detection and Classification using Yolo Algorithm.

Real time Object detection & Classification using YOLO algorithm. Real Time Object Detection and Classification using Yolo Algorithm. What is Object D

Ketan Chawla 1 Apr 17, 2022