BYOL for Audio: Self-Supervised Learning for General-Purpose Audio Representation

Overview

key_visual

BYOL for Audio: Self-Supervised Learning for General-Purpose Audio Representation

This is a demo implementation of BYOL for Audio (BYOL-A), a self-supervised learning method for general-purpose audio representation, includes:

  • Training code that can train models with arbitrary audio files.
  • Evaluation code that can evaluate trained models with downstream tasks.
  • Pretrained weights.

If you find BYOL-A useful in your research, please use the following BibTeX entry for citation.

@misc{niizumi2021byol-a,
      title={BYOL for Audio: Self-Supervised Learning for General-Purpose Audio Representation}, 
      author={Daisuke Niizumi and Daiki Takeuchi and Yasunori Ohishi and Noboru Harada and Kunio Kashino},
      booktitle = {2021 International Joint Conference on Neural Networks, {IJCNN} 2021},
      year={2021},
      eprint={2103.06695},
      archivePrefix={arXiv},
      primaryClass={eess.AS}
}

Getting Started

  1. Download external source files, and apply a patch. Our implementation uses the following.

    curl -O https://raw.githubusercontent.com/lucidrains/byol-pytorch/2aa84ee18fafecaf35637da4657f92619e83876d/byol_pytorch/byol_pytorch.py
    patch < byol_a/byol_pytorch.diff
    mv byol_pytorch.py byol_a
    curl -O https://raw.githubusercontent.com/daisukelab/general-learning/7b31d31637d73e1a74aec3930793bd5175b64126/MLP/torch_mlp_clf.py
    mv torch_mlp_clf.py utils
  2. Install PyTorch 1.7.1, torchaudio, and other dependencies listed on requirements.txt.

Evaluating BYOL-A Representations

Downstream Task Evaluation

The following steps will perform a downstream task evaluation by linear-probe fashion. This is an example with SPCV2; Speech commands dataset v2.

  1. Preprocess metadata (.csv file) and audio files, processed files will be stored under a folder work.

    # usage: python -m utils.preprocess_ds <downstream task> <path to its dataset>
    python -m utils.preprocess_ds spcv2 /path/to/speech_commands_v0.02
  2. Run evaluation. This will convert all .wav audio to representation embeddings first, train a lineaer layer network, then calculate accuracy as a result.

    python evaluate.py pretrained_weights/AudioNTT2020-BYOLA-64x96d2048.pth spcv2

You can also run an evaluation multiple times and take an average result. Following will evaluate on UrbanSound8K with a unit audio duration of 4.0 seconds, for 10 times.

# usage: python evaluate.py <your weight> <downstream task> <unit duration sec.> <# of iteration>
python evaluate.py pretrained_weights/AudioNTT2020-BYOLA-64x96d2048.pth us8k 4.0 10

Evaluating Representations In Your Tasks

This is an example to calculate a feature vector for an audio sample.

from byol_a.common import *
from byol_a.augmentations import PrecomputedNorm
from byol_a.models import AudioNTT2020


device = torch.device('cuda')
cfg = load_yaml_config('config.yaml')
print(cfg)

# Mean and standard deviation of the log-mel spectrogram of input audio samples, pre-computed.
# See calc_norm_stats in evaluate.py for your reference.
stats = [-5.4919195,  5.0389895]

# Preprocessor and normalizer.
to_melspec = torchaudio.transforms.MelSpectrogram(
    sample_rate=cfg.sample_rate,
    n_fft=cfg.n_fft,
    win_length=cfg.win_length,
    hop_length=cfg.hop_length,
    n_mels=cfg.n_mels,
    f_min=cfg.f_min,
    f_max=cfg.f_max,
)
normalizer = PrecomputedNorm(stats)

# Load pretrained weights.
model = AudioNTT2020(d=cfg.feature_d)
model.load_weight('pretrained_weights/AudioNTT2020-BYOLA-64x96d2048.pth', device)

# Load your audio file.
wav, sr = torchaudio.load('work/16k/spcv2/one/00176480_nohash_0.wav') # a sample from SPCV2 for now
assert sr == cfg.sample_rate, "Let's convert the audio sampling rate in advance, or do it here online."

# Convert to a log-mel spectrogram, then normalize.
lms = normalizer((to_melspec(wav) + torch.finfo(torch.float).eps).log())

# Now, convert the audio to the representation.
features = model(lms.unsqueeze(0))

Training From Scratch

You can also train models. Followings are an example of training on FSD50K.

  1. Convert all samples to 16kHz. This will convert all FSD50K files to a folder work/16k/fsd50k while preserving folder structure.

    python -m utils.convert_wav /path/to/fsd50k work/16k/fsd50k
  2. Start training, this example trains with all development set audio samples from FSD50K.

    python train.py work/16k/fsd50k/FSD50K.dev_audio

Refer to Table VI on our paper for the performance of a model trained on FSD50K.

Pretrained Weights

We include 3 pretrained weights of our encoder network.

Method Dim. Filename NSynth US8K VoxCeleb1 VoxForge SPCV2/12 SPCV2 Average
BYOL-A 512-d AudioNTT2020-BYOLA-64x96d512.pth 69.1% 78.2% 33.4% 83.5% 86.5% 88.9% 73.3%
BYOL-A 1024-d AudioNTT2020-BYOLA-64x96d1024.pth 72.7% 78.2% 38.0% 88.5% 90.1% 91.4% 76.5%
BYOL-A 2048-d AudioNTT2020-BYOLA-64x96d2048.pth 74.1% 79.1% 40.1% 90.2% 91.0% 92.2% 77.8%

License

This implementation is for your evaluation of BYOL-A paper, see LICENSE for the detail.

Acknowledgements

BYOL-A is built on top of byol-pytorch, a BYOL implementation by Phil Wang (@lucidrains). We thank Phil for open-source sophisticated code.

@misc{wang2020byol-pytorch,
  author =       {Phil Wang},
  title =        {Bootstrap Your Own Latent (BYOL), in Pytorch},
  howpublished = {\url{https://github.com/lucidrains/byol-pytorch}},
  year =         {2020}
}

References

Comments
  • Question for reproducing results

    Question for reproducing results

    Hi,

    Thanks for sharing this great work! I tried to reproduce the results using the official guidance but I failed.

    After processing the data, I run the following commands:

    CUDA_VISIBLE_DEVICES=0 python -W ignore train.py work/16k/fsd50k/FSD50K.dev_audio
    cp lightning_logs/version_4/checkpoints/epoch\=99-step\=16099.ckpt AudioNTT2020-BYOLA-64x96d2048.pth
    CUDA_VISIBLE_DEVICES=4 python evaluate.py AudioNTT2020-BYOLA-64x96d2048.pth spcv2
    

    However, the results are far from the reported results

    image

    Did I miss something important? Thank you very much.

    question 
    opened by ChenyangLEI 15
  • Evaluation on voxforge

    Evaluation on voxforge

    Hi,

    Thank you so much for your contribution. This works is very interesting and your code is easy for me to follow. But one of the downstream dataset, voxforge is missing from the preprocess_ds.py. Could you please release the code for that dataset, too?

    Thank you again for your time.

    Best regards

    opened by Huiimin5 9
  • A mistake in RunningMean

    A mistake in RunningMean

    Thank you for the fascinating paper and the code to reproduce it!

    I think there might be a problem in RunningMean. The current formula (the same in v1 and v2) looks like this:

    $$ m_n = m_{n - 1} + \frac{a_n - m_{n - 1}}{n - 1}, $$

    which is inconsistent with the correct formula listed on StackOverflow:

    $$ m_n = m_{n - 1} + \frac{a_n - m_{n - 1}}{n}. $$

    The problem is that self.n is incremented after the new mean is computed. Could you please either correct me if I am wrong or correct the code?

    opened by WhiteTeaDragon 4
  • a basic question:torch.randn(): argument 'size' must be tuple of ints, but found element of type list at pos 3`

    a basic question:torch.randn(): argument 'size' must be tuple of ints, but found element of type list at pos 3`

    Traceback (most recent call last):
      File "F:\IntellIDEA\PyCharm 2019.2.2\helpers\pydev\pydevd.py", line 2066, in <module>
        main()
      File "F:\IntellIDEA\PyCharm 2019.2.2\helpers\pydev\pydevd.py", line 2060, in main
        globals = debugger.run(setup['file'], None, None, is_module)
      File "F:\IntellIDEA\PyCharm 2019.2.2\helpers\pydev\pydevd.py", line 1411, in run
        return self._exec(is_module, entry_point_fn, module_name, file, globals, locals)
      File "F:\IntellIDEA\PyCharm 2019.2.2\helpers\pydev\pydevd.py", line 1418, in _exec
        pydev_imports.execfile(file, globals, locals)  # execute the script
      File "F:\IntellIDEA\PyCharm 2019.2.2\helpers\pydev\_pydev_imps\_pydev_execfile.py", line 18, in execfile
        exec(compile(contents+"\n", file, 'exec'), glob, loc)
      File "E:/pythonSpace/byol-a/train.py", line 132, in <module>
        main(audio_dir=base_path + '1/', epochs=100)
      File "E:/pythonSpace/byol-a/train.py", line 112, in main
        learner = BYOLALearner(model, cfg.lr, cfg.shape,
      File "E:/pythonSpace/byol-a/train.py", line 56, in __init__
        self.learner = BYOL(model, image_size=shape, **kwargs)
      File "D:\min\envs\torch1_7_1\lib\site-packages\byol_pytorch\byol_pytorch.py", line 211, in __init__
        self.forward(torch.randn(2, 3, image_size, image_size, device=device))
    TypeError: randn(): argument 'size' must be tuple of ints, but found element of type list at pos 3
    
    Not_an_issue 
    opened by a1030076395 3
  • Question about comments in the train.py

    Question about comments in the train.py

    https://github.com/nttcslab/byol-a/blob/master/train.py

    At line 67, there is comments for the shape of input.

            # in fact, it should be (B, 1, F, T), e.g. (256, 1, 64, 96) where 64 is the number of mel bins
            paired_inputs = torch.cat(paired_inputs) # [(B,1,T,F), (B,1,T,F)] -> (2*B,1,T,F)
    

    image

    However, it is different from the descriptions in config.yml file

    # Shape of loh-mel spectrogram [F, T].
    shape: [64, 96]
    
    bug 
    opened by ChenyangLEI 2
  • Doubt in paper

    Doubt in paper

    Hi there,

    Section 4, subsection A, part 1 from your paper says:

     The number of frames, T, in one segment was 96 in pretraining, which corresponds to 1,014ms. 
    

    However, the previous line says the hop size used was 10ms. So according to this 96 would mean 960ms?

    Am I understanding something wrong here?

    Thank You in advance!

    question 
    opened by Sreyan88 2
  • Random crop is not working.

    Random crop is not working.

    https://github.com/nttcslab/byol-a/blob/60cebdc514951e6b42e18e40a2537a01a39ad47b/byol_a/dataset.py#L80-L82

    If len(wav) > self.unit_length, length_adj will be a negative value. So start will be 0. If wav (before pad) is shorter than unit length, length_adj == 0 after padding. So start is always 0. So It will only perform a certain area of crop from 0 to self.unit_length (cropped_wav == wav[0: self.unit_length]), not random crop.

    So I think line 80 should be changed to length_adj = len(wav) - self.unit_length .

    bug 
    opened by JUiscoming 2
  • Doubt in RunningNorm

    Doubt in RunningNorm

    Hi There, great repo!

    I think I have misunderstood something wrong with the RunningNorm function. The function expects the size of an epoch, however, your implementation passes the size of the entire dataset.

    Is it a bug? Or is there a problem with my understanding?

    Thank You!

    question 
    opened by Sreyan88 2
  • How to interpret the performance

    How to interpret the performance

    Hi, it' s a great work, but how can I understance the performance metric? For example, VoxCeleb1 is usually for speaker verification, shouldn't we measure EER?

    opened by ranchlai 2
  • Finetuning of BYOL-A

    Finetuning of BYOL-A

    Hi,

    your paper is super interesting. I have a question regarding the downstream tasks. If I understand the paper correctly, you used a single linear layer for the downstream tasks which only used the sum of mean and max of the representation over time as input.

    Did you try to finetune BYOL-A end-to-end after pretraining to the downstream tasks? In the case of TRILL they were able to improve the performance even further by finetuning the whole model end-to-end. Is there a specific reason why this is not possible with BYOL-A?

    questions 
    opened by mschiwek 1
  • Missing scaling of validation samples in evaluate.py

    Missing scaling of validation samples in evaluate.py

    https://github.com/nttcslab/byol-a/blob/master/evaluate.py#L112

    It also needs: X_val = scaler.transform(X_val), or validation acc & loss will be invalid. This can be one of the reasons why we see lower performance when I tried to get official performances...

    bug 
    opened by daisukelab 0
Releases(v2.0.0)
Owner
NTT Communication Science Laboratories
NTT Communication Science Laboratories
Implementation of self-attention mechanisms for general purpose. Focused on computer vision modules. Ongoing repository.

Self-attention building blocks for computer vision applications in PyTorch Implementation of self attention mechanisms for computer vision in PyTorch

AI Summer 962 Dec 23, 2022
An essential implementation of BYOL in PyTorch + PyTorch Lightning

Essential BYOL A simple and complete implementation of Bootstrap your own latent: A new approach to self-supervised Learning in PyTorch + PyTorch Ligh

Enrico Fini 48 Sep 27, 2022
The Self-Supervised Learner can be used to train a classifier with fewer labeled examples needed using self-supervised learning.

Published by SpaceML • About SpaceML • Quick Colab Example Self-Supervised Learner The Self-Supervised Learner can be used to train a classifier with

SpaceML 92 Nov 30, 2022
Dense Contrastive Learning (DenseCL) for self-supervised representation learning, CVPR 2021.

Dense Contrastive Learning for Self-Supervised Visual Pre-Training This project hosts the code for implementing the DenseCL algorithm for se

Xinlong Wang 491 Jan 3, 2023
Self-supervised learning on Graph Representation Learning (node-level task)

graph_SSL Self-supervised learning on Graph Representation Learning (node-level task) How to run the code To run GRACE, sh run_GRACE.sh To run GCA, sh

Namkyeong Lee 3 Dec 31, 2021
a general-purpose Transformer based vision backbone

Swin Transformer By Ze Liu*, Yutong Lin*, Yue Cao*, Han Hu*, Yixuan Wei, Zheng Zhang, Stephen Lin and Baining Guo. This repo is the official implement

Microsoft 9.9k Jan 8, 2023
ImVoxelNet: Image to Voxels Projection for Monocular and Multi-View General-Purpose 3D Object Detection

ImVoxelNet: Image to Voxels Projection for Monocular and Multi-View General-Purpose 3D Object Detection This repository contains implementation of the

Visual Understanding Lab @ Samsung AI Center Moscow 190 Dec 30, 2022
A task-agnostic vision-language architecture as a step towards General Purpose Vision

Towards General Purpose Vision Systems By Tanmay Gupta, Amita Kamath, Aniruddha Kembhavi, and Derek Hoiem Overview Welcome to the official code base f

AI2 79 Dec 23, 2022
A general-purpose, flexible, and easy-to-use simulator alongside an OpenAI Gym trading environment for MetaTrader 5 trading platform (Approved by OpenAI Gym)

gym-mtsim: OpenAI Gym - MetaTrader 5 Simulator MtSim is a simulator for the MetaTrader 5 trading platform alongside an OpenAI Gym environment for rein

Mohammad Amin Haghpanah 184 Dec 31, 2022
Unofficial PyTorch implementation of MobileViT based on paper "MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer".

MobileViT RegNet Unofficial PyTorch implementation of MobileViT based on paper MOBILEVIT: LIGHT-WEIGHT, GENERAL-PURPOSE, AND MOBILE-FRIENDLY VISION TR

Hong-Jia Chen 91 Dec 2, 2022
General purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends)

General purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends). Blazing fast, mobile-enabled, asynchronous and optimized for advanced GPU data processing usecases. Backed by the Linux Foundation.

The Kompute Project 1k Jan 6, 2023
A general-purpose programming language, focused on simplicity, safety and stability.

The Rivet programming language A general-purpose programming language, focused on simplicity, safety and stability. Rivet's goal is to be a very power

The Rivet programming language 17 Dec 29, 2022
Official PyTorch implementation for paper Context Matters: Graph-based Self-supervised Representation Learning for Medical Images

Context Matters: Graph-based Self-supervised Representation Learning for Medical Images Official PyTorch implementation for paper Context Matters: Gra

null 49 Nov 23, 2022
[CVPR2021] The source code for our paper 《Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Learning》.

TBE The source code for our paper "Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Le

Jinpeng Wang 150 Dec 28, 2022
Implementation of Self-supervised Graph-level Representation Learning with Local and Global Structure (ICML 2021).

Self-supervised Graph-level Representation Learning with Local and Global Structure Introduction This project is an implementation of ``Self-supervise

MilaGraph 50 Dec 9, 2022
A PyTorch implementation of "Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning", IJCAI-21

MERIT A PyTorch implementation of our IJCAI-21 paper Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning. Depen

Graph Analysis & Deep Learning Laboratory, GRAND 32 Jan 2, 2023
Code for the paper "Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds" (ICCV 2021)

Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds This is the official code implementation for the paper "Spatio-temporal Se

Hesper 63 Jan 5, 2023
A self-supervised 3D representation learning framework named viewpoint bottleneck.

Pointly-supervised 3D Scene Parsing with Viewpoint Bottleneck Paper Created by Liyi Luo, Beiwen Tian, Hao Zhao and Guyue Zhou from Institute for AI In

null 63 Aug 11, 2022
A self-supervised 3D representation learning framework named viewpoint bottleneck.

Pointly-supervised 3D Scene Parsing with Viewpoint Bottleneck Paper Created by Liyi Luo, Beiwen Tian, Hao Zhao and Guyue Zhou from Institute for AI In

null 42 Sep 24, 2021