A self-supervised 3D representation learning framework named viewpoint bottleneck.

Overview

Pointly-supervised 3D Scene Parsing with Viewpoint Bottleneck

Paper

Created by Liyi Luo, Beiwen Tian, Hao Zhao and Guyue Zhou from Institute for AI Industry Research (AIR), Tsinghua University, China.


result2

result3

result4

result5

result6

Introduction

Semantic understanding of 3D point clouds is important for various robotics applications. Given that point-wise semantic annotation is expensive, in our paper, we address the challenge of learning models with extremely sparse labels. The core problem is how to leverage numerous unlabeled points.

In this repository, we propose a self-supervised 3D representation learning framework named viewpoint bottleneck. It optimizes a mutual-information based objective, which is applied on point clouds under different viewpoints. A principled analysis shows that viewpoint bottleneck leads to an elegant surrogate loss function that is suitable for large-scale point cloud data. Compared with former arts based upon contrastive learning, viewpoint bottleneck operates on the feature dimension instead of the sample dimension. This paradigm shift has several advantages: It is easy to implement and tune, does not need negative samples and performs better on our goal down-streaming task. We evaluate our method on the public benchmark ScanNet, under the pointly-supervised setting. We achieve the best quantitative results among comparable solutions. Meanwhile we provide an extensive qualitative inspection on various challenging scenes. They demonstrate that our models can produce fairly good scene parsing results for robotics applications.

Citation

If you find our work useful in your research, please consider citing:

@misc{

} 

Preparation

Requirements

  • Python 3.6 or higher
  • CUDA 11.1

It is strongly recommended to proceed in a virtual environment (venv, conda)

Installation

Clone the repository and install the rest of the requirements

git clone https://github.com/OPEN-AIR-SUN/ViewpointBottleneck/
cd ViewpointBottlencek

# Uncomment following commands to create & activate a conda env
# conda create -n env_name python==3.8
# conda activate env_name

pip install -r requirements.txt

Data Preprocess

  1. Download ScanNetV2 dataset and data-efficient setting HERE .

  2. Extract point clouds and annotations by running

# From root of the repo
# Fully-supervised:
python data_preprocess/scannet.py

# Pointly supervised:
python data_preprocess/scannet_eff.py

Pretrain the model

# From root of the repo
cd pretrain/
chmod +x ./run.sh
./run.sh

You can modify some details with environment variables:

SHOTS=50 FEATURE_DIM=512 \
LOG_DIR=logs \
PRETRAIN_PATH=actual/path/to/pretrain.pth \
DATASET_PATH=actual/directory/of/dataset \
./run.sh

Fine-tune the model with pretrained checkpoint

# From root of the repo
cd finetune/
chmod +x ./run.sh
./run.sh

You can modify some details with environment variables:

SHOTS=50 \
LOG_DIR=logs \
PRETRAIN_PATH=actual/path/to/pretrain.pth \
DATASET_PATH=actual/directory/of/dataset \
./run.sh

Model Zoo

Pretrained Checkpoints Feature Dimension 256 512 1024
Final checkpoints
mIOU(%) on val split
Supervised points
20 56.2 57.0 56.3
50 63.3 63.6 63.7
100 66.5 66.8 66.5
200 68.4 68.5 68.4

Acknowledgements

We appreciate the work of ScanNet and SpatioTemporalSegmentation.

We are grateful to Anker Innovations for supporting this project.

You might also like...
codes for Image Inpainting with External-internal Learning and Monochromic Bottleneck
codes for Image Inpainting with External-internal Learning and Monochromic Bottleneck

Image Inpainting with External-internal Learning and Monochromic Bottleneck This repository is for the CVPR 2021 paper: 'Image Inpainting with Externa

Official PyTorch implementation for paper Context Matters: Graph-based Self-supervised Representation Learning for Medical Images
Official PyTorch implementation for paper Context Matters: Graph-based Self-supervised Representation Learning for Medical Images

Context Matters: Graph-based Self-supervised Representation Learning for Medical Images Official PyTorch implementation for paper Context Matters: Gra

[CVPR2021] The source code for our paper 《Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Learning》.
[CVPR2021] The source code for our paper 《Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Learning》.

TBE The source code for our paper "Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Le

BYOL for Audio: Self-Supervised Learning for General-Purpose Audio Representation
BYOL for Audio: Self-Supervised Learning for General-Purpose Audio Representation

BYOL for Audio: Self-Supervised Learning for General-Purpose Audio Representation This is a demo implementation of BYOL for Audio (BYOL-A), a self-sup

Implementation of Self-supervised Graph-level Representation Learning with Local and Global Structure (ICML 2021).
Implementation of Self-supervised Graph-level Representation Learning with Local and Global Structure (ICML 2021).

Self-supervised Graph-level Representation Learning with Local and Global Structure Introduction This project is an implementation of ``Self-supervise

A PyTorch implementation of
A PyTorch implementation of "Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning", IJCAI-21

MERIT A PyTorch implementation of our IJCAI-21 paper Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning. Depen

Code for the paper "Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds" (ICCV 2021)

Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds This is the official code implementation for the paper "Spatio-temporal Se

The official implementation of the paper,
The official implementation of the paper, "SubTab: Subsetting Features of Tabular Data for Self-Supervised Representation Learning"

SubTab: Author: Talip Ucar ([email protected]) The official implementation of the paper, SubTab: Subsetting Features of Tabular Data for Self-Supervis

This is the implementation of "SELF SUPERVISED REPRESENTATION LEARNING WITH DEEP CLUSTERING FOR ACOUSTIC UNIT DISCOVERY FROM RAW SPEECH" submitted to ICASSP 2022

CPC_DeepCluster This is the implementation of "SELF SUPERVISED REPRESENTATION LEARNING WITH DEEP CLUSTERING FOR ACOUSTIC UNIT DISCOVERY FROM RAW SPEEC

Owner
null
LBK 35 Dec 26, 2022
《Unsupervised 3D Human Pose Representation with Viewpoint and Pose Disentanglement》(ECCV 2020) GitHub: [fig9]

Unsupervised 3D Human Pose Representation [Paper] The implementation of our paper Unsupervised 3D Human Pose Representation with Viewpoint and Pose Di

null 42 Nov 24, 2022
PyTorch implementations for our SIGGRAPH 2021 paper: Editable Free-viewpoint Video Using a Layered Neural Representation.

st-nerf We provide PyTorch implementations for our paper: Editable Free-viewpoint Video Using a Layered Neural Representation SIGGRAPH 2021 Jiakai Zha

Diplodocus 258 Jan 2, 2023
Code reproduce for paper "Vehicle Re-identification with Viewpoint-aware Metric Learning"

VANET Code reproduce for paper "Vehicle Re-identification with Viewpoint-aware Metric Learning" Introduction This is the implementation of article VAN

EMDATA-AILAB 23 Dec 26, 2022
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)

Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021) The implementation of Reducing Infromation Bottleneck for W

Jungbeom Lee 81 Dec 16, 2022
[EMNLP 2021] Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training

RoSTER The source code used for Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training, p

Yu Meng 60 Dec 30, 2022
The Self-Supervised Learner can be used to train a classifier with fewer labeled examples needed using self-supervised learning.

Published by SpaceML • About SpaceML • Quick Colab Example Self-Supervised Learner The Self-Supervised Learner can be used to train a classifier with

SpaceML 92 Nov 30, 2022
Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer

ConSERT Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer Requirements torch==1.6.0

Yan Yuanmeng 478 Dec 25, 2022
Dense Contrastive Learning (DenseCL) for self-supervised representation learning, CVPR 2021.

Dense Contrastive Learning for Self-Supervised Visual Pre-Training This project hosts the code for implementing the DenseCL algorithm for se

Xinlong Wang 491 Jan 3, 2023
Self-supervised learning on Graph Representation Learning (node-level task)

graph_SSL Self-supervised learning on Graph Representation Learning (node-level task) How to run the code To run GRACE, sh run_GRACE.sh To run GCA, sh

Namkyeong Lee 3 Dec 31, 2021