This repository holds code and data for our PETS'22 article 'From "Onion Not Found" to Guard Discovery'.

Overview

From "Onion Not Found" to Guard Discovery (PETS'22)

This repository holds the code and data for our PETS'22 paper titled 'From "Onion Not Found" to Guard Discovery'. Each subfolder contains instructions to reproduce results, figures, and tables per the respective section in the paper. Please see the README.md files in each subfolder for more information.

Güneş Acar contributed heavily to the creation of this artifact.

Attack overview

Obtaining this Repository and Setting up the Environment

Warning: After taking below download steps, this repository is more than 16 GB in total size. There is also an accompanying data set hosted at the OSF that is about 64.5 GB.

user@host  $    git clone https://github.com/numbleroot/from-onion-not-found-to-guard-discovery.git
user@host  $    cd from-onion-not-found-to-guard-discovery
user@host  $    curl --location "https://files.de-1.osf.io/v1/resources/mbn95/providers/osfstorage/617bf5ad91ed6e00f3891f66?action=download&version=1&direct" --output 3_cell-pattern_large-files.tar
user@host  $    tar xvf 3_cell-pattern_large-files.tar
user@host  $    rm 3_cell-pattern_large-files.tar

The reproducibility steps described in this repository require superuser privileges (root) and a number of installed packages. Installation and setup of those will depend on your system. In case you are running a recent Ubuntu, we recommend to run the following steps so that the commands we list in the READMEs across this repository complete successfully:

  1. Update your package list: sudo apt update
  2. Install Python 3 (programming language): sudo apt install python3,
  3. Install Pip (Python package manager): sudo apt install python3-pip,
  4. Install Go (programming language): sudo apt install golang,
  5. Install Docker (virtualization software to run containers): please follow the steps listed on their documentation page,
  6. Install Jupyter Lab and Python libraries numpy, pandas, seaborn, and matplotlib: pip install jupyterlab numpy pandas seaborn matplotlib,
  7. Download Tor Browser from their download page and extract it to a location dedicated for usage with this repository.

Note: Please mind that due to /proc/cpuinfo and /proc/meminfo not being available, the attack script 4_attack-tuning/launch_attack.py will not work on MacOS (unless alternative ways to obtain the desired values are used in their places).

Primary Data Sets

Instructions for Reproduction

Browse the READMEs linked below for instructions for how to reproduce the results of each section:

Reference

You can use the following BibTeX to cite our paper:

@article{OldenburgAcarDiaz_GuardDiscovery,
    title   = {{}},
    author  = {},
    journal = {},
    number  = {},
    volume  = {},
    year    = {},
    doi     = {},
    url     = {},
    pages   = {}
}
You might also like...
Convolutional neural network web app trained to track our infant’s sleep schedule using our Google Nest camera.
Convolutional neural network web app trained to track our infant’s sleep schedule using our Google Nest camera.

Machine Learning Sleep Schedule Tracker What is it? Convolutional neural network web app trained to track our infant’s sleep schedule using our Google

This repository contains the entire code for our work "Two-Timescale End-to-End Learning for Channel Acquisition and Hybrid Precoding"

Two-Timescale-DNN Two-Timescale End-to-End Learning for Channel Acquisition and Hybrid Precoding This repository contains the entire code for our work

Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

CoProtector Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

A PyTorch implementation of
A PyTorch implementation of "Pathfinder Discovery Networks for Neural Message Passing"

A PyTorch implementation of "Pathfinder Discovery Networks for Neural Message Passing" (WebConf 2021). Abstract In this work we propose Pathfind

TraND: Transferable Neighborhood Discovery for Unsupervised Cross-domain Gait Recognition.

TraND This is the code for the paper "Jinkai Zheng, Xinchen Liu, Chenggang Yan, Jiyong Zhang, Wu Liu, Xiaoping Zhang and Tao Mei: TraND: Transferable

KeypointDeformer: Unsupervised 3D Keypoint Discovery for Shape Control

KeypointDeformer: Unsupervised 3D Keypoint Discovery for Shape Control Tomas Jakab, Richard Tucker, Ameesh Makadia, Jiajun Wu, Noah Snavely, Angjoo Ka

Neighborhood Contrastive Learning for Novel Class Discovery

Neighborhood Contrastive Learning for Novel Class Discovery This repository contains the official implementation of our paper: Neighborhood Contrastiv

Unsupervised Discovery of Object Radiance Fields
Unsupervised Discovery of Object Radiance Fields

Unsupervised Discovery of Object Radiance Fields by Hong-Xing Yu, Leonidas J. Guibas and Jiajun Wu from Stanford University. arXiv link: https://arxiv

Official implementation of
Official implementation of "A Unified Objective for Novel Class Discovery", ICCV2021 (Oral)

A Unified Objective for Novel Class Discovery This is the official repository for the paper: A Unified Objective for Novel Class Discovery Enrico Fini

Owner
Lennart Oldenburg
PhD student, KU Leuven. Privacy-Enhancing Technologies, Distributed Systems, Cryptography, Sustainability & Climate.
Lennart Oldenburg
This repo holds code for TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation

TransUNet This repo holds code for TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation Usage

null 1.4k Jan 4, 2023
Source code and data from the RecSys 2020 article "Carousel Personalization in Music Streaming Apps with Contextual Bandits" by W. Bendada, G. Salha and T. Bontempelli

Carousel Personalization in Music Streaming Apps with Contextual Bandits - RecSys 2020 This repository provides Python code and data to reproduce expe

Deezer 48 Jan 2, 2023
Seach Losses of our paper 'Loss Function Discovery for Object Detection via Convergence-Simulation Driven Search', accepted by ICLR 2021.

CSE-Autoloss Designing proper loss functions for vision tasks has been a long-standing research direction to advance the capability of existing models

Peidong Liu(刘沛东) 54 Dec 17, 2022
Implementation of the algorithm shown in the article "Modelo de Predicción de Éxito de Canciones Basado en Descriptores de Audio"

Success Predictor Implementation of the algorithm shown in the article "Modelo de Predicción de Éxito de Canciones Basado en Descriptores de Audio". B

Rodrigo Nazar Meier 4 Mar 17, 2022
source code for https://arxiv.org/abs/2005.11248 "Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics"

Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics This work will be published in Nature Biomedical

International Business Machines 71 Nov 15, 2022
Pytorch implementation of paper "Learning Co-segmentation by Segment Swapping for Retrieval and Discovery"

SegSwap Pytorch implementation of paper "Learning Co-segmentation by Segment Swapping for Retrieval and Discovery" [PDF] [Project page] If our project

xshen 41 Dec 10, 2022
Allele-specific pipeline for unbiased read mapping(WIP), QTL discovery(WIP), and allelic-imbalance analysis

WASP2 (Currently in pre-development): Allele-specific pipeline for unbiased read mapping(WIP), QTL discovery(WIP), and allelic-imbalance analysis Requ

McVicker Lab 2 Aug 11, 2022
OOD Dataset Curator and Benchmark for AI-aided Drug Discovery

?? DrugOOD ?? : OOD Dataset Curator and Benchmark for AI Aided Drug Discovery This is the official implementation of the DrugOOD project, this is the

null 108 Dec 17, 2022
The repository forked from NVlabs uses our data. (Differentiable rasterization applied to 3D model simplification tasks)

nvdiffmodeling [origin_code] Differentiable rasterization applied to 3D model simplification tasks, as described in the paper: Appearance-Driven Autom

Qiujie (Jay) Dong 2 Oct 31, 2022
PyTorch implementation of our Adam-NSCL algorithm from our CVPR2021 (oral) paper "Training Networks in Null Space for Continual Learning"

Adam-NSCL This is a PyTorch implementation of Adam-NSCL algorithm for continual learning from our CVPR2021 (oral) paper: Title: Training Networks in N

Shipeng Wang 34 Dec 21, 2022