Automated question generation and question answering from Turkish texts using text-to-text transformers

Overview
citation

If you use this software in your work, please cite as:

@article{akyon2021automated,
  title={Automated question generation and question answering from Turkish texts using text-to-text transformers},
  author={Akyon, Fatih Cagatay and Cavusoglu, Devrim and Cengiz, Cemil and Altinuc, Sinan Onur and Temizel, Alptekin},
  journal={arXiv preprint arXiv:2111.06476},
  year={2021}
}
install
git clone https://github.com/obss/turkish-question-generation.git
cd turkish-question-generation
pip install -r requirements.txt
train
  • start a training using args:
python run.py --model_name_or_path google/mt5-small  --output_dir runs/exp1 --do_train --do_eval --tokenizer_name_or_path mt5_qg_tokenizer --per_device_train_batch_size 4 --gradient_accumulation_steps 2 --learning_rate 1e-4 --seed 42 --save_total_limit 1
python run.py config.json
python run.py config.yaml
evaluate
  • arrange related params in config:
do_train: false
do_eval: true
eval_dataset_list: ["tquad2-valid", "xquad.tr"]
prepare_data: true
mt5_task_list: ["qa", "qg", "ans_ext"]
mt5_qg_format: "both"
no_cuda: false
  • start an evaluation:
python run.py config.yaml
neptune
  • install neptune:
pip install neptune-client
  • download config file and arrange neptune params:
run_name: 'exp1'
neptune_project: 'name/project'
neptune_api_token: 'YOUR_API_TOKEN'
  • start a training:
python train.py config.yaml
wandb
  • install wandb:
pip install wandb
  • download config file and arrange wandb params:
run_name: 'exp1'
wandb_project: 'turque'
  • start a training:
python train.py config.yaml
finetuned checkpoints
Name Model data
train
params
(M)
model size
(GB)
turque-s1 mt5-small tquad2-train+tquad2-valid+xquad.tr 60M 1.2GB
mt5-small-3task-both-tquad2 mt5-small tquad2-train 60M 1.2GB
mt5-small-3task-prepend-tquad2 mt5-small tquad2-train 60M 1.2GB
mt5-base-3task-both-tquad2 mt5-base tquad2-train 220M 2.3GB
format
  • answer extraction:

input:

Osman Bey 1258 yılında Söğüt’te doğdu. Osman Bey 1 Ağustos 1326’da Bursa’da hayatını kaybetmiştir.1281 yılında Osman Bey 23 yaşında iken Ahi teşkilatından olan Şeyh Edebali’nin kızı Malhun Hatun ile evlendi." ">
"
      
        Osman Bey 1258 yılında Söğüt’te doğdu. 
       
         Osman Bey 1 Ağustos 1326’da Bursa’da hayatını kaybetmiştir.1281 yılında Osman Bey 23 yaşında iken Ahi teşkilatından olan Şeyh Edebali’nin kızı Malhun Hatun ile evlendi."

       
      

target:


    
      1258 
     
       Söğüt’te 
      

      
     
    
  • question answering:

input:

"question: Osman Bey nerede doğmuştur? context: Osman Bey 1258 yılında Söğüt’te doğdu. Osman Bey 1 Ağustos 1326’da Bursa’da hayatını kaybetmiştir.1281 yılında Osman Bey 23 yaşında iken Ahi teşkilatından olan Şeyh Edebali’nin kızı Malhun Hatun ile evlendi."

target:

"Söğüt’te"
  • question generation (prepend):

input:

"answer: Söğüt’te context: Osman Bey 1258 yılında Söğüt’te doğdu. Osman Bey 1 Ağustos 1326’da Bursa’da hayatını kaybetmiştir.1281 yılında Osman Bey 23 yaşında iken Ahi teşkilatından olan Şeyh Edebali’nin kızı Malhun Hatun ile evlendi."

target:

"Osman Bey nerede doğmuştur?"
  • question generation (highlight):

input:

Söğüt’te doğdu. Osman Bey 1 Ağustos 1326’da Bursa’da hayatını kaybetmiştir.1281 yılında Osman Bey 23 yaşında iken Ahi teşkilatından olan Şeyh Edebali’nin kızı Malhun Hatun ile evlendi." ">
"generate question: Osman Bey 1258 yılında 
     
       Söğüt’te 
      
        doğdu. Osman Bey 1 Ağustos 1326’da Bursa’da hayatını kaybetmiştir.1281 yılında Osman Bey 23 yaşında iken Ahi teşkilatından olan Şeyh Edebali’nin kızı Malhun Hatun ile evlendi."

      
     

target:

"Osman Bey nerede doğmuştur?"
  • question generation (both):

input:

Söğüt’te doğdu. Osman Bey 1 Ağustos 1326’da Bursa’da hayatını kaybetmiştir.1281 yılında Osman Bey 23 yaşında iken Ahi teşkilatından olan Şeyh Edebali’nin kızı Malhun Hatun ile evlendi." ">
"answer: Söğüt’te context: Osman Bey 1258 yılında 
     
       Söğüt’te 
      
        doğdu. Osman Bey 1 Ağustos 1326’da Bursa’da hayatını kaybetmiştir.1281 yılında Osman Bey 23 yaşında iken Ahi teşkilatından olan Şeyh Edebali’nin kızı Malhun Hatun ile evlendi."

      
     

target:

"Osman Bey nerede doğmuştur?"
paper results
BERTurk-base and mT5-base QA evaluation results for TQuADv2 fine-tuning.

mT5-base QG evaluation results for single-task (ST) and multi-task (MT) for TQuADv2 fine-tuning.

TQuADv1 and TQuADv2 fine-tuning QG evaluation results for multi-task mT5 variants. MT-Both means, mT5 model is fine-tuned with ’Both’ input format and in a multi-task setting.

paper configs

You can find the config files used in the paper under configs/paper.

contributing

Before opening a PR:

  • Install required development packages:
pip install "black==21.7b0" "flake8==3.9.2" "isort==5.9.2"
  • Reformat with black and isort:
black . --config pyproject.toml
isort .
You might also like...
NeuralQA: A Usable Library for Question Answering on Large Datasets with BERT
NeuralQA: A Usable Library for Question Answering on Large Datasets with BERT

NeuralQA: A Usable Library for (Extractive) Question Answering on Large Datasets with BERT Still in alpha, lots of changes anticipated. View demo on n

Knowledge Graph,Question Answering System,基于知识图谱和向量检索的医疗诊断问答系统
Knowledge Graph,Question Answering System,基于知识图谱和向量检索的医疗诊断问答系统

Knowledge Graph,Question Answering System,基于知识图谱和向量检索的医疗诊断问答系统

Baseline code for Korean open domain question answering(ODQA)
Baseline code for Korean open domain question answering(ODQA)

Open-Domain Question Answering(ODQA)는 다양한 주제에 대한 문서 집합으로부터 자연어 질의에 대한 답변을 찾아오는 task입니다. 이때 사용자 질의에 답변하기 위해 주어지는 지문이 따로 존재하지 않습니다. 따라서 사전에 구축되어있는 Knowl

Disfl-QA: A Benchmark Dataset for Understanding Disfluencies in Question Answering

Disfl-QA is a targeted dataset for contextual disfluencies in an information seeking setting, namely question answering over Wikipedia passages. Disfl-QA builds upon the SQuAD-v2 (Rajpurkar et al., 2018) dataset, where each question in the dev set is annotated to add a contextual disfluency using the paragraph as a source of distractors.

CCQA A New Web-Scale Question Answering Dataset for Model Pre-Training

CCQA: A New Web-Scale Question Answering Dataset for Model Pre-Training This is the official repository for the code and models of the paper CCQA: A N

chaii - hindi & tamil question answering

chaii - hindi & tamil question answering This is the solution for rank 5th in Kaggle competition: chaii - Hindi and Tamil Question Answering. The comp

Contact Extraction with Question Answering.

contactsQA Extraction of contact entities from address blocks and imprints with Extractive Question Answering. Goal Input: Dr. Max Mustermann Hauptstr

BERT-based Financial Question Answering System
BERT-based Financial Question Answering System

BERT-based Financial Question Answering System In this example, we use Jina, PyTorch, and Hugging Face transformers to build a production-ready BERT-b

Python package to easily retrain OpenAI's GPT-2 text-generating model on new texts
Python package to easily retrain OpenAI's GPT-2 text-generating model on new texts

gpt-2-simple A simple Python package that wraps existing model fine-tuning and generation scripts for OpenAI's GPT-2 text generation model (specifical

Owner
Open Business Software Solutions
Open Source for Open Business
Open Business Software Solutions
Question answering app is used to answer for a user given question from user given text.

Question answering app is used to answer for a user given question from user given text.It is created using HuggingFace's transformer pipeline and streamlit python packages.

Siva Prakash 3 Apr 5, 2022
Question and answer retrieval in Turkish with BERT

trfaq Google supported this work by providing Google Cloud credit. Thank you Google for supporting the open source! ?? What is this? At this repo, I'm

M. Yusuf Sarıgöz 13 Oct 10, 2022
:mag: Transformers at scale for question answering & neural search. Using NLP via a modular Retriever-Reader-Pipeline. Supporting DPR, Elasticsearch, HuggingFace's Modelhub...

Haystack is an end-to-end framework for Question Answering & Neural search that enables you to ... ... ask questions in natural language and find gran

deepset 6.4k Jan 9, 2023
🚀 RocketQA, dense retrieval for information retrieval and question answering, including both Chinese and English state-of-the-art models.

In recent years, the dense retrievers based on pre-trained language models have achieved remarkable progress. To facilitate more developers using cutt

null 475 Jan 4, 2023
Türkçe küfürlü içerikleri bulan bir yapay zeka kütüphanesi / An ML library for profanity detection in Turkish sentences

"Kötü söz sahibine aittir." -Anonim Nedir? sinkaf uygunsuz yorumların bulunmasını sağlayan bir python kütüphanesidir. Farkı nedir? Diğer algoritmalard

KaraGoz 4 Feb 18, 2022
Python package for Turkish Language.

PyTurkce Python package for Turkish Language. Documentation: https://pyturkce.readthedocs.io. Installation pip install pyturkce Usage from pyturkce im

Mert Cobanov 14 Oct 9, 2022
Turkish Stop Words Türkçe Dolgu Sözcükleri

trstop Turkish Stop Words Türkçe Dolgu Sözcükleri In this repository I put Turkish stop words that is contained in the first 10 thousand words with th

Ahmet Aksoy 103 Nov 12, 2022
:house_with_garden: Fast & easy transfer learning for NLP. Harvesting language models for the industry. Focus on Question Answering.

(Framework for Adapting Representation Models) What is it? FARM makes Transfer Learning with BERT & Co simple, fast and enterprise-ready. It's built u

deepset 1.6k Dec 27, 2022
NeuralQA: A Usable Library for Question Answering on Large Datasets with BERT

NeuralQA: A Usable Library for (Extractive) Question Answering on Large Datasets with BERT Still in alpha, lots of changes anticipated. View demo on n

Victor Dibia 220 Dec 11, 2022
:house_with_garden: Fast & easy transfer learning for NLP. Harvesting language models for the industry. Focus on Question Answering.

(Framework for Adapting Representation Models) What is it? FARM makes Transfer Learning with BERT & Co simple, fast and enterprise-ready. It's built u

deepset 1.1k Feb 14, 2021