PyTorch to TensorFlow Lite converter

Overview

PyTorch to TensorFlow Lite Converter

Converts PyTorch whole model into Tensorflow Lite

PyTorch -> Onnx -> Tensorflow 2 -> TFLite

Please install first

python3 setup.py install

Args

  • --torch-path Path to local PyTorch model, please save whole model e.g. torch.save(model, PATH)
  • --tf-lite-path Save path for Tensorflow Lite model
  • --target-shape Model input shape to create static-graph (default: (224, 224, 3)
  • --sample-file Path to sample image file. If model is not about computer-vision, please use leave empty and only enter --target-shape
  • --seed Seeds RNG to produce random input data when --sample-file does not exists
  • --log=INFO To see what happens behind

Basic usage of the script

To test with sample file:

python3 -m torch2tflite.converter
    --torch-path tests/mobilenetv2_model.pt
    --tflite-path mobilenetv2.tflite
    --sample-file sample_image.png
    --target-shape 224 224 3

To test with random input to check gradients:

python3 -m torch2tflite.converter
    --torch-path tests/mobilenetv2_model.pt
    --tflite-path mobilenetv2.tflite
    --target-shape 224 224 3
    --seed 10
Comments
  • Issue in the model converting

    Issue in the model converting

    Hi, I had an error below when the code is in torch.onnx.export. I doubt the problem is the model isn't loaded completely but I'm not sure. Is it possible to provide any model sample to verify my code environment. Thanks! 'dict' object has no attribute 'training'

    bug 
    opened by wenjingyang 10
  • No module named 'models'

    No module named 'models'

    I tried this code to convert my custom trained YOLOv5 model (.pt) It returns this message

    2021-05-31 10:26:03.181164: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0 No module named 'models'

    How can I fix this?

    opened by jhnhp 7
  • OSError: SavedModel file does not exist at: ./converter/tf_model/{saved_model.pbtxt|saved_model.pb}

    OSError: SavedModel file does not exist at: ./converter/tf_model/{saved_model.pbtxt|saved_model.pb}

    Hi,

    Thank you very much for sharing this code. I have tried applying it to my torch model, the conversion steps from torch to ONNX and ONNX to TF work fine, but it fails at the last step (TF to TFlite) with the following message:

    Traceback (most recent call last): File "converter.py", line 58, in main() File "converter.py", line 22, in main convert(torch_model_path=args.torch_model_path, File "/home/A49175/torch2tflite-master/converter/torch_to_tflite.py", line 157, in convert tf_to_tf_lite(tf_path=TF_PATH, tf_lite_path=tf_lite_model_path) File "/home/A49175/torch2tflite-master/converter/torch_to_tflite.py", line 74, in tf_to_tf_lite converter = tf.lite.TFLiteConverter.from_saved_model(tf_path) # Path to the SavedModel directory File "/home/A49175/.conda/envs/tflite-converter/lib/python3.8/site-packages/tensorflow/lite/python/lite.py", line 399, in from_saved_model saved_model = _load(saved_model_dir, tags) File "/home/A49175/.conda/envs/tflite-converter/lib/python3.8/site-packages/tensorflow/python/saved_model/load.py", line 578, in load return load_internal(export_dir, tags) File "/home/A49175/.conda/envs/tflite-converter/lib/python3.8/site-packages/tensorflow/python/saved_model/load.py", line 588, in load_internal loader_impl.parse_saved_model_with_debug_info(export_dir)) File "/home/A49175/.conda/envs/tflite-converter/lib/python3.8/site-packages/tensorflow/python/saved_model/loader_impl.py", line 56, in parse_saved_model_with_debug_info saved_model = _parse_saved_model(export_dir) File "/home/A49175/.conda/envs/tflite-converter/lib/python3.8/site-packages/tensorflow/python/saved_model/loader_impl.py", line 110, in parse_saved_model raise IOError("SavedModel file does not exist at: %s/{%s|%s}" % OSError: SavedModel file does not exist at: ./converter/tf_model/{saved_model.pbtxt|saved_model.pb}

    Do you have any idea of the origin of this problem ? I am using the packages versions specified in the requirements.txt.

    Thank you!

    opened by PaulKassis 4
  • Fails to create .tflite

    Fails to create .tflite

    ValueError: Could not open './converter/tf_lite_model.tflite'.

    I've loaded my .pt file and a sample test image....but looks like the conversion is not working. Can you rectify this?

    Thanks

    opened by rakshith-rm 3
  • error: (-215:Assertion failed) !_src.empty() in function 'cvtColor'

    error: (-215:Assertion failed) !_src.empty() in function 'cvtColor'

    I tried this code to convert my custom trained YOLOv5 model (.pt) It returns this bug: cv2.error: OpenCV(4.1.2) /io/opencv/modules/imgproc/src/color.cpp:182: error: (-215:Assertion failed) !_src.empty() in function 'cvtColor'

    2021-06-02 03:17:26.651552: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcudart.so.10.1 Showing result!

    Traceback (most recent call last): File "converter.py", line 59, in main() File "converter.py", line 30, in main original_image, tf_lite_image, torch_image = get_example_input(args.test_im_path) File "/content/drive/My Drive/Univoice/yolov5/torch2tflite/converter/torch_to_tflite.py", line 28, in get_example_input image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) cv2.error: OpenCV(4.1.2) /io/opencv/modules/imgproc/src/color.cpp:182: error: (-215:Assertion failed) !_src.empty() in function 'cvtColor'

    How can I fix this?

    opened by thongvhoang 2
  • Under what license is your code?

    Under what license is your code?

    Hi,

    under what license is the code in your repository? I've found the overview at https://choosealicense.com/ useful to choose a license. It would be great if you could add a license file to the repository, because otherwise it can't be used.

    opened by fvollmer 2
  • Compatibility update (v1.1.0)

    Compatibility update (v1.1.0)

    • Development packages (black, pre-commit, poetry.lock etc.) added
    • Code style changed to black
    • Project setup changed to pyproject.toml from setup.py
    • VSCode settings added
    enhancement 
    opened by omerferhatt 0
  • TypeError: 'tuple' object cannot be interpreted as an integer

    TypeError: 'tuple' object cannot be interpreted as an integer

    I created below colab and getting below "TypeError: 'tuple' object cannot be interpreted as an integer" error. Could you please help me on this ? https://colab.research.google.com/drive/19JeOkrxlGP6KtkfGbrkO87COc4pvSZSE?usp=sharing#scrollTo=vdeytDxjFdZ3

    Traceback (most recent call last): File "/usr/lib/python3.7/runpy.py", line 193, in _run_module_as_main "main", mod_spec) File "/usr/lib/python3.7/runpy.py", line 85, in _run_code exec(code, run_globals) File "/content/torch2tflite/torch2tflite/converter.py", line 187, in args.seed File "/content/torch2tflite/torch2tflite/converter.py", line 40, in init self.sample_data = self.load_sample_input(sample_file_path, target_shape, seed, normalize) File "/content/torch2tflite/torch2tflite/converter.py", line 121, in load_sample_input data = np.random.random(target_shape).astype(np.float32) File "mtrand.pyx", line 434, in numpy.random.mtrand.RandomState.random File "mtrand.pyx", line 425, in numpy.random.mtrand.RandomState.random_sample File "_common.pyx", line 291, in numpy.random._common.double_fill TypeError: 'tuple' object cannot be interpreted as an integer

    opened by nyadla-sys 2
  • Runtime Errori mportError: dlopen

    Runtime Errori mportError: dlopen

    When I have ran: python -m torch2tflite.converter --torch-path converted.pt --tflite-path siggraph17.tflite --targeet-shape 225 225 3 --seed 10

    I have the following error:

      File "/usr/local/Cellar/[email protected]/3.8.12_1/Frameworks/Python.framework/Versions/3.8/lib/python3.8/runpy.py", line 194, in _run_module_as_main
        return _run_code(code, main_globals, None,
      File "/usr/local/Cellar/[email protected]/3.8.12_1/Frameworks/Python.framework/Versions/3.8/lib/python3.8/runpy.py", line 87, in _run_code
        exec(code, run_globals)
      File "/XXX/torch2tflite/torch2tflite/converter.py", line 12, in <module>
        import onnx
      File "/XXX/torch2tflite/venv38/lib/python3.8/site-packages/onnx-1.11.0-py3.8-macosx-12-x86_64.egg/onnx/__init__.py", line 10, in <module>
        from .onnx_cpp2py_export import ONNX_ML
    ImportError: dlopen(/XXX/torch2tflite/venv38/lib/python3.8/site-packages/onnx-1.11.0-py3.8-macosx-12-x86_64.egg/onnx/onnx_cpp2py_export.cpython-38-darwin.so, 0x0002): symbol not found in flat namespace '__ZN6google8protobuf11MessageLite20ParseFromCodedStreamEPNS0_2io16CodedInputStreamE'```
    
    
    ANY SUGGESTION, SOLUTION?
    opened by celikmustafa89 0
  • ERROR:root:Can not load PyTorch model. Please make surethat model saved like `torch.save(model, PATH)`

    ERROR:root:Can not load PyTorch model. Please make surethat model saved like `torch.save(model, PATH)`

    I'm trying to convert a YOLOv5 best.pt weights file to a .tflite file so we can deploy the model on a flutter app.

    This is the code:

    `import torch weights_path = '/content/drive/MyDrive/Weights/best.pt' yolo_path = '/content/yolov5'

    model = torch.hub.load(yolo_path, 'custom', weights_path, source='local') # local repo torch.save(model, '/content/pipeline.pt' )`

    You can also go straight to the colab for all the colde. https://colab.research.google.com/drive/19JeOkrxlGP6KtkfGbrkO87COc4pvSZSE?usp=sharing

    I assume I'm not saving the model how the converter wants it, but I can't figure it out. Can you please explain exactly how the file needs to be saved so the code will work ?

    Thanks a lot in advance!

    opened by IvanStoykov 5
  • Installation issue

    Installation issue

    Dear Authors, Could you please verify the dependencies. It seems tflite-runtime~=2.5 is not available now.

    No local packages or working download links found for tflite-runtime~=2.5 error: Could not find suitable distribution for Requirement.parse('tflite-runtime~=2.5')

    Thanks Maulik

    bug 
    opened by maulikmadhavi 0
Releases(v1.0)
Owner
Omer Ferhat Sarioglu
DL/ML Enthusiast | Computer Vision
Omer Ferhat Sarioglu
null 270 Dec 24, 2022
A lightweight wrapper for PyTorch that provides a simple declarative API for context switching between devices, distributed modes, mixed-precision, and PyTorch extensions.

A lightweight wrapper for PyTorch that provides a simple declarative API for context switching between devices, distributed modes, mixed-precision, and PyTorch extensions.

Fidelity Investments 56 Sep 13, 2022
A PyTorch repo for data loading and utilities to be shared by the PyTorch domain libraries.

A PyTorch repo for data loading and utilities to be shared by the PyTorch domain libraries.

null 878 Dec 30, 2022
Unofficial PyTorch implementation of DeepMind's Perceiver IO with PyTorch Lightning scripts for distributed training

Unofficial PyTorch implementation of DeepMind's Perceiver IO with PyTorch Lightning scripts for distributed training

Martin Krasser 251 Dec 25, 2022
PyTorch framework A simple and complete framework for PyTorch, providing a variety of data loading and simple task solutions that are easy to extend and migrate

PyTorch framework A simple and complete framework for PyTorch, providing a variety of data loading and simple task solutions that are easy to extend and migrate

Cong Cai 12 Dec 19, 2021
Pretrained ConvNets for pytorch: NASNet, ResNeXt, ResNet, InceptionV4, InceptionResnetV2, Xception, DPN, etc.

Pretrained models for Pytorch (Work in progress) The goal of this repo is: to help to reproduce research papers results (transfer learning setups for

Remi 8.7k Dec 31, 2022
Model summary in PyTorch similar to `model.summary()` in Keras

Keras style model.summary() in PyTorch Keras has a neat API to view the visualization of the model which is very helpful while debugging your network.

Shubham Chandel 3.7k Dec 29, 2022
torch-optimizer -- collection of optimizers for Pytorch

torch-optimizer torch-optimizer -- collection of optimizers for PyTorch compatible with optim module. Simple example import torch_optimizer as optim

Nikolay Novik 2.6k Jan 3, 2023
A PyTorch implementation of EfficientNet

EfficientNet PyTorch Quickstart Install with pip install efficientnet_pytorch and load a pretrained EfficientNet with: from efficientnet_pytorch impor

Luke Melas-Kyriazi 7.2k Jan 6, 2023
The easiest way to use deep metric learning in your application. Modular, flexible, and extensible. Written in PyTorch.

News March 3: v0.9.97 has various bug fixes and improvements: Bug fixes for NTXentLoss Efficiency improvement for AccuracyCalculator, by using torch i

Kevin Musgrave 5k Jan 2, 2023
A collection of extensions and data-loaders for few-shot learning & meta-learning in PyTorch

Torchmeta A collection of extensions and data-loaders for few-shot learning & meta-learning in PyTorch. Torchmeta contains popular meta-learning bench

Tristan Deleu 1.7k Jan 6, 2023
PyTorch Extension Library of Optimized Scatter Operations

PyTorch Scatter Documentation This package consists of a small extension library of highly optimized sparse update (scatter and segment) operations fo

Matthias Fey 1.2k Jan 7, 2023
PyTorch Extension Library of Optimized Autograd Sparse Matrix Operations

PyTorch Sparse This package consists of a small extension library of optimized sparse matrix operations with autograd support. This package currently

Matthias Fey 757 Jan 4, 2023
Reformer, the efficient Transformer, in Pytorch

Reformer, the Efficient Transformer, in Pytorch This is a Pytorch implementation of Reformer https://openreview.net/pdf?id=rkgNKkHtvB It includes LSH

Phil Wang 1.8k Jan 6, 2023
higher is a pytorch library allowing users to obtain higher order gradients over losses spanning training loops rather than individual training steps.

higher is a library providing support for higher-order optimization, e.g. through unrolled first-order optimization loops, of "meta" aspects of these

Facebook Research 1.5k Jan 3, 2023
PyTorch implementation of TabNet paper : https://arxiv.org/pdf/1908.07442.pdf

README TabNet : Attentive Interpretable Tabular Learning This is a pyTorch implementation of Tabnet (Arik, S. O., & Pfister, T. (2019). TabNet: Attent

DreamQuark 2k Dec 27, 2022
PyTorch extensions for fast R&D prototyping and Kaggle farming

Pytorch-toolbelt A pytorch-toolbelt is a Python library with a set of bells and whistles for PyTorch for fast R&D prototyping and Kaggle farming: What

Eugene Khvedchenya 1.3k Jan 5, 2023
An implementation of Performer, a linear attention-based transformer, in Pytorch

Performer - Pytorch An implementation of Performer, a linear attention-based transformer variant with a Fast Attention Via positive Orthogonal Random

Phil Wang 900 Dec 22, 2022
The goal of this library is to generate more helpful exception messages for numpy/pytorch matrix algebra expressions.

Tensor Sensor See article Clarifying exceptions and visualizing tensor operations in deep learning code. One of the biggest challenges when writing co

Terence Parr 704 Dec 14, 2022