Status: Archive (code is provided as-is, no updates expected)
InfoGAN
Code for reproducing key results in the paper InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets by Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, Pieter Abbeel.
Dependencies
This project currently requires the dev version of TensorFlow available on Github: https://github.com/tensorflow/tensorflow. As of the release, the latest commit is 79174a.
In addition, please pip install
the following packages:
prettytensor
progressbar
python-dateutil
Running in Docker
$ git clone [email protected]:openai/InfoGAN.git
$ docker run -v $(pwd)/InfoGAN:/InfoGAN -w /InfoGAN -it -p 8888:8888 gcr.io/tensorflow/tensorflow:r0.9rc0-devel
root@X:/InfoGAN# pip install -r requirements.txt
root@X:/InfoGAN# python launchers/run_mnist_exp.py
Running Experiment
We provide the source code to run the MNIST example:
PYTHONPATH='.' python launchers/run_mnist_exp.py
You can launch TensorBoard to view the generated images:
tensorboard --logdir logs/mnist