A nutritional label for food for thought.

Overview

Lexiscore

As a first effort in tackling the theme of information overload in content consumption, I've been working on the lexiscore: a nutritional label for food for thought designed to help you narrow in on resources which personally bring you the most value. The open source companion software can automatically label raw text originating from RSS feeds, bookmarked pages, PDFs, EPUBs, and more. In the scope of this project, I'm considering valuable resources to be those from which you learn a lot, those which are packed with ideas you find surprising.

Read more...

Installation

Note: This tool requires a running instance of the conceptarium as a proxy for your knowledge.

The lexiscore labeler can either be deployed from source or using Docker.

Docker

To deploy the lexiscore labeler using Docker, first make sure to have Docker installed, then simply run the following.

docker run -p 8501:8501 paulbricman/lexiscore 

The tool should be available at localhost:8501.

From Source

To set up the lexiscore labeler, clone the repository and run the following:

python3 -m pip install -r requirements.txt
streamlit run main.py

The tool should be available at localhost:8501.

Screenshots

You might also like...
MPLP: Metapath-Based Label Propagation for Heterogenous Graphs

MPLP: Metapath-Based Label Propagation for Heterogenous Graphs Results on MAG240M Here, we demonstrate the following performance on the MAG240M datase

Official Pytorch Implementation of:
Official Pytorch Implementation of: "Semantic Diversity Learning for Zero-Shot Multi-label Classification"(2021) paper

Semantic Diversity Learning for Zero-Shot Multi-label Classification Paper Official PyTorch Implementation Avi Ben-Cohen, Nadav Zamir, Emanuel Ben Bar

 Shared Attention for Multi-label Zero-shot Learning
Shared Attention for Multi-label Zero-shot Learning

Shared Attention for Multi-label Zero-shot Learning Overview This repository contains the implementation of Shared Attention for Multi-label Zero-shot

Official PyTorch Implementation of Embedding Transfer with Label Relaxation for Improved Metric Learning, CVPR 2021
Official PyTorch Implementation of Embedding Transfer with Label Relaxation for Improved Metric Learning, CVPR 2021

Embedding Transfer with Label Relaxation for Improved Metric Learning Official PyTorch implementation of CVPR 2021 paper Embedding Transfer with Label

Code for Two-stage Identifier:
Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition"

Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition", accepted at ACL 2021. For details of the model and experiments, please see our paper.

General Multi-label Image Classification with Transformers

General Multi-label Image Classification with Transformers Jack Lanchantin, Tianlu Wang, Vicente Ordóñez Román, Yanjun Qi Conference on Computer Visio

Source code for "UniRE: A Unified Label Space for Entity Relation Extraction.", ACL2021.

UniRE Source code for "UniRE: A Unified Label Space for Entity Relation Extraction.", ACL2021. Requirements python: 3.7.6 pytorch: 1.8.1 transformers:

Implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training
Implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training

SemCo The official pytorch implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training

Official implementation of paper
Official implementation of paper "Query2Label: A Simple Transformer Way to Multi-Label Classification".

Introdunction This is the official implementation of the paper "Query2Label: A Simple Transformer Way to Multi-Label Classification". Abstract This pa

Comments
  • RSS OPML only pulls last article

    RSS OPML only pulls last article

    Summary

    Adding RSS from OPML only pulls the last article.

    Details

    After setting up lexiscore, I take my blog's RSS (https://ivans.io/rss/) and convert it to OPML using https://opml-gen.ovh/. This yields the following file:

    <opml version="2.0">
    	<body>
    		<outline text="Subscriptions" title="Subscriptions">
    			<outline xmlUrl='https://ivans.io/rss/' />
    	
    		</outline>
    	</body>
    </opml>
    

    After adding this to lexiscore, only the most recent article appears in the reading list. I've checked the RSS feed, and all articles are fully present.

    Desired Behavior

    RSS feeds should pull all articles.

    opened by issmirnov 4
  • NLTK downloader problem when deploying with docker.

    NLTK downloader problem when deploying with docker.

    I have deployed the docker image to my personal server. After importing the RSS from my blog (https://ivans.io/rss/) as an OPML file, I click on "start labelling". This causes a stack trace:

    LookupError: ********************************************************************** 
    Resource punkt not found. Please use the NLTK Downloader to obtain the resource: 
    [31m>>> import nltk >>> nltk.download('punkt') 
    [0m For more information see: https://www.nltk.org/data.html Attempted to load tokenizers/punkt/PY3/english.pickle
    [0m Searched in: - '/root/nltk_data' - '/usr/local/nltk_data' - '/usr/local/share/nltk_data' - '/usr/local/lib/nltk_data' - '/usr/share/nltk_data' - '/usr/local/share/nltk_data' - '/usr/lib/nltk_data' - '/usr/local/lib/nltk_data' - '' **********************************************************************
    Traceback:
    File "/usr/local/lib/python3.8/site-packages/streamlit/script_runner.py", line 354, in _run_script
        exec(code, module.__dict__)
    File "/app/main.py", line 30, in <module>
        cart_section(col2)
    File "/app/components.py", line 110, in cart_section
        content_paragraphs = get_paragraphs(row['text'])
    File "/app/processing.py", line 19, in get_paragraphs
        sents = sent_tokenize(line)
    File "/usr/local/lib/python3.8/site-packages/nltk/tokenize/__init__.py", line 107, in sent_tokenize
        tokenizer = load("tokenizers/punkt/{0}.pickle".format(language))
    File "/usr/local/lib/python3.8/site-packages/nltk/data.py", line 750, in load
        opened_resource = _open(resource_url)
    File "/usr/local/lib/python3.8/site-packages/nltk/data.py", line 875, in _open
        return find(path_, path + [""]).open()
    File "/usr/local/lib/python3.8/site-packages/nltk/data.py", line 583, in find
        raise LookupError(resource_not_found)
    
    opened by issmirnov 3
  • Add aggregator page as input source

    Add aggregator page as input source

    Imagine adding this as input sources of type "Aggregator": https://metaphor.so/search?q=The%20coolest%20essay%20on%20human-machine%20collaboration%2C%20cognitive%20augmentation%2C%20and%20tools%20for%20thought%20is

    The labeling software would sift through and add a nutritional value filter on top of a cool "search" approach

    enhancement 
    opened by paulbricman 0
  • Save concptarium URL with local cookie

    Save concptarium URL with local cookie

    Currently, I have this deployed via docker on a personal server. On every page refresh, I am asked for the url of the conceptarium. It would be useful to have this URL saved in local cookie storage.

    enhancement 
    opened by issmirnov 1
Releases(v1.0.0)
Owner
Paul Bricman
Building tools which augment the mind.
Paul Bricman
A PyTorch implementation of ICLR 2022 Oral paper PiCO: Contrastive Label Disambiguation for Partial Label Learning

PiCO: Contrastive Label Disambiguation for Partial Label Learning This is a PyTorch implementation of ICLR 2022 Oral paper PiCO; also see our Project

王皓波 83 May 11, 2022
a dnn ai project to classify which food people are eating on audio recordings

Deep Learning - EAT Challenge About This project is part of an AI challenge of the DeepLearning course 2021 at the University of Augsburg. The objecti

Marco Tröster 1 Oct 24, 2021
Official implementation of AAAI-21 paper "Label Confusion Learning to Enhance Text Classification Models"

Description: This is the official implementation of our AAAI-21 accepted paper Label Confusion Learning to Enhance Text Classification Models. The str

null 101 Nov 25, 2022
Object detection on multiple datasets with an automatically learned unified label space.

Simple multi-dataset detection An object detector trained on multiple large-scale datasets with a unified label space; Winning solution of E

Xingyi Zhou 407 Dec 30, 2022
Official implementation of our paper "LLA: Loss-aware Label Assignment for Dense Pedestrian Detection" in Pytorch.

LLA: Loss-aware Label Assignment for Dense Pedestrian Detection This project provides an implementation for "LLA: Loss-aware Label Assignment for Dens

null 35 Dec 6, 2022
DECAF: Deep Extreme Classification with Label Features

DECAF DECAF: Deep Extreme Classification with Label Features @InProceedings{Mittal21, author = "Mittal, A. and Dahiya, K. and Agrawal, S. and Sain

null 46 Nov 6, 2022
Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation (CVPR 2021)

Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation (CVPR 2021, official Pytorch implementatio

Microsoft 247 Dec 25, 2022
《LightXML: Transformer with dynamic negative sampling for High-Performance Extreme Multi-label Text Classification》(AAAI 2021) GitHub:

LightXML: Transformer with dynamic negative sampling for High-Performance Extreme Multi-label Text Classification

null 76 Dec 5, 2022
PointCloud Annotation Tools, support to label object bound box, ground, lane and kerb

PointCloud Annotation Tools, support to label object bound box, ground, lane and kerb

halo 368 Dec 6, 2022
Implementation of Online Label Smoothing in PyTorch

Online Label Smoothing Pytorch implementation of Online Label Smoothing (OLS) presented in Delving Deep into Label Smoothing. Introduction As the abst

null 83 Dec 14, 2022