Segmentation vgg16 fcn - cityscapes

Overview

VGGSegmentation

Segmentation vgg16 fcn - cityscapes Priprema skupa

skripta prepare_dataset_downsampled.py

Iz slika cityscapesa izrezuje haubu automobila, i smanjuje sliku na željenu rezoluciju, to zapisuje u tfrecords formatu. Treba zadati putanju do cityscapesa, izlazni direktorij gdje će se spremati tfrecordsi i zadati željenu rezoluciju.

Priprema težina vgg-a

Da bi se model mogao fine-tuneati treba na disku imati spremljene težine mreže (prethodno naučene na nekom drugom skupu). One se mogu skinuti s interneta u raznim formatima.

Ja sam ih imala spremljene u sljedećim datotekama: conv1_1_biases.bin conv1_1_weights.bin conv1_2_biases.bin conv1_2_weights.bin conv2_1_biases.bin conv2_1_weights.bin conv2_2_biases.bin conv2_2_weights.bin conv3_1_biases.bin conv3_1_weights.bin conv3_2_biases.bin conv3_2_weights.bin conv3_3_biases.bin conv3_3_weights.bin conv4_1_biases.bin conv4_1_weights.bin conv4_2_biases.bin conv4_2_weights.bin conv4_3_biases.bin conv4_3_weights.bin conv5_1_biases.bin conv5_1_weights.bin conv5_2_biases.bin conv5_2_weights.bin conv5_3_biases.bin conv5_3_weights.bin fc6_biases.bin fc6_weights.bin fc7_biases.bin fc7_weights.bin fc8_biases.bin fc8_weights.bin

Ako će se težine učitavati iz ckpt. datoteke npr vgg_16.ckpt, onda će i u kodu trebati mjenjati metodu create_init_op unutar model.py

Konfiguracija

config/cityscapes.py - primjer fajla s konfiguracijom za treniranje

Treba promjeniti putanje

model_path da pokazuje do py fajla s definicijom modela (primjer za takve dvije defincije su model.py i model2.py)

dataset_dir - da pokazuje do foldera s prethodno pripremljenim tfrecordsima (koji sadrzi subdirektorije train i val)

treba paziti pri razlicitim rezolucijama da se promjene zastavice img_width i height

ostale zastavice se većinom odnose na treniranje modela to mjenjati prema potrebi.

subsample_factor zastavica bi označavala faktor za koji se rezolucija mape smanji na kraju mreže. Taj faktor će ovisiti o samome modelu koji se trenira, ako model ima tri pooling sloja 2*2 svaki taj sloj će sliku smanjiti za dva puta pa će ukupno smanjnjenje biti za faktor osam

train.py - skripta koja pokreće skriptu treniranja, nakon svake epohe model se evaluira na skupu za validaciju.

You might also like...
Realtime segmentation with ENet, the fast and accurate segmentation net.
Realtime segmentation with ENet, the fast and accurate segmentation net.

Enet This is a realtime segmentation net with almost 22 fps on GTX1080 ti, and the model size is very small with only 28M. This repo contains the infe

Mae segmentation - Reproduction of semantic segmentation using masked autoencoder (mae)

ADE20k Semantic segmentation with MAE Getting started Install the mmsegmentation

Multi-atlas segmentation (MAS) is a promising framework for medical image segmentation
Multi-atlas segmentation (MAS) is a promising framework for medical image segmentation

Multi-atlas segmentation (MAS) is a promising framework for medical image segmentation. Generally, MAS methods register multiple atlases, i.e., medical images with corresponding labels, to a target image;

Detectron2 is FAIR's next-generation platform for object detection and segmentation.
Detectron2 is FAIR's next-generation platform for object detection and segmentation.

Detectron2 is Facebook AI Research's next generation software system that implements state-of-the-art object detection algorithms. It is a ground-up r

Code for our method RePRI for Few-Shot Segmentation. Paper at http://arxiv.org/abs/2012.06166
Code for our method RePRI for Few-Shot Segmentation. Paper at http://arxiv.org/abs/2012.06166

Region Proportion Regularized Inference (RePRI) for Few-Shot Segmentation In this repo, we provide the code for our paper : "Few-Shot Segmentation Wit

Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers
Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

Segmentation Transformer Implementation of Segmentation Transformer in PyTorch, a new model to achieve SOTA in semantic segmentation while using trans

This repository is an unoffical PyTorch implementation of Medical segmentation in 3D and 2D.
This repository is an unoffical PyTorch implementation of Medical segmentation in 3D and 2D.

Pytorch Medical Segmentation Read Chinese Introduction:Here! Recent Updates 2021.1.8 The train and test codes are released. 2021.2.6 A bug in dice was

YolactEdge: Real-time Instance Segmentation on the Edge
YolactEdge: Real-time Instance Segmentation on the Edge

YolactEdge, the first competitive instance segmentation approach that runs on small edge devices at real-time speeds. Specifically, YolactEdge runs at up to 30.8 FPS on a Jetson AGX Xavier (and 172.7 FPS on an RTX 2080 Ti) with a ResNet-101 backbone on 550x550 resolution images.

the code used for the preprint Embedding-based Instance Segmentation of Microscopy Images.
the code used for the preprint Embedding-based Instance Segmentation of Microscopy Images.

EmbedSeg Introduction This repository hosts the version of the code used for the preprint Embedding-based Instance Segmentation of Microscopy Images.

Owner
null
A simple rest api serving a deep learning model that classifies human gender based on their faces. (vgg16 transfare learning)

this is a simple rest api serving a deep learning model that classifies human gender based on their faces. (vgg16 transfare learning)

crispengari 5 Dec 9, 2021
Training Cifar-10 Classifier Using VGG16

opevcvdl-hw3 This project uses pytorch and Qt to achieve the requirements. Version Python 3.6 opencv-contrib-python 3.4.2.17 Matplotlib 3.1.1 pyqt5 5.

Kenny Cheng 3 Aug 17, 2022
VGG16 model-based classification project about brain tumor detection.

Brain-Tumor-Classification-with-MRI VGG16 model-based classification project about brain tumor detection. First, you can check what people are doing o

Atakan Erdoğan 2 Mar 21, 2022
Another pytorch implementation of FCN (Fully Convolutional Networks)

FCN-pytorch-easiest Trying to be the easiest FCN pytorch implementation and just in a get and use fashion Here I use a handbag semantic segmentation f

Y. Dong 158 Dec 21, 2022
Another pytorch implementation of FCN (Fully Convolutional Networks)

FCN-pytorch-easiest Trying to be the easiest FCN pytorch implementation and just in a get and use fashion Here I use a handbag semantic segmentation f

Y. Dong 158 Dec 21, 2022
Recall Loss for Semantic Segmentation (This repo implements the paper: Recall Loss for Semantic Segmentation)

Recall Loss for Semantic Segmentation (This repo implements the paper: Recall Loss for Semantic Segmentation) Download Synthia dataset The model uses

null 32 Sep 21, 2022
Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP

Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP Abstract: We introduce a method that allows to automatically se

Daniil Pakhomov 134 Dec 19, 2022
TorchDistiller - a collection of the open source pytorch code for knowledge distillation, especially for the perception tasks, including semantic segmentation, depth estimation, object detection and instance segmentation.

This project is a collection of the open source pytorch code for knowledge distillation, especially for the perception tasks, including semantic segmentation, depth estimation, object detection and instance segmentation.

yifan liu 147 Dec 3, 2022
nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation "

nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation ". Please

jsguo 610 Dec 28, 2022