Weakly Supervised Segmentation with Tensorflow. Implements instance segmentation as described in Simple Does It: Weakly Supervised Instance and Semantic Segmentation, by Khoreva et al. (CVPR 2017).

Overview

Weakly Supervised Segmentation with TensorFlow

This repo contains a TensorFlow implementation of weakly supervised instance segmentation as described in Simple Does It: Weakly Supervised Instance and Semantic Segmentation, by Khoreva et al. (CVPR 2017).

The idea behind weakly supervised segmentation is to train a model using cheap-to-generate label approximations (e.g., bounding boxes) as substitute/guiding labels for computer vision classification tasks that usually require very detailed labels. In semantic labelling, each image pixel is assigned to a specific class (e.g., boat, car, background, etc.). In instance segmentation, all the pixels belonging to the same object instance are given the same instance ID.

Per [2014a], pixelwise mask annotations are far more expensive to generate than object bounding box annotations (requiring up to 15x more time). Some models, like Simply Does It (SDI) [2016a] claim they can use a weak supervision approach to reach 95% of the quality of the fully supervised model, both for semantic labelling and instance segmentation.

Simple Does It (SDI)

Experimental Setup for Instance Segmentation

In weakly supervised instance segmentation, there are no pixel-wise annotations (i.e., no segmentation masks) that can be used to train a model. Yet, we aim to train a model that can still predict segmentation masks by only being given an input image and bounding boxes for the objects of interest in that image.

The masks used for training are generated starting from individual object bounding boxes. For each annotated bounding box, we generate a segmentation mask using the GrabCut method (although, any other method could be used), and train a convnet to regress from the image and bounding box information to the instance segmentation mask.

Note that in the original paper, a more sophisticated segmenter is used (M∩G+).

Network

SDI validates its work repurposing two different instance segmentation architectures (DeepMask [2015a] and DeepLab2 VGG-16 [2016b]). Here we use the OSVOS FCN (See section 3.1 of [2016c]).

Setup

The code in this repo was developed and tested using Anaconda3 v.4.4.0. To reproduce our conda environment, please use the following files:

On Ubuntu:

On Windows:

Jupyter Notebooks

The recommended way to test this implementation is to use the following jupyter notebooks:

  • VGG16 Net Surgery: The weakly supervised segmentation techniques presented in the "Simply Does It" paper use a backbone convnet (either DeepLab or VGG16 network) pre-trained on ImageNet. This pre-trained network takes RGB images as an input (W x H x 3). Remember that the weakly supervised version is trained using 4-channel inputs: RGB + a binary mask with a filled bounding box of the object instance. Therefore, we need to perform net surgery and create a 4-channel input version of the VGG16 net, initialized with the 3-channel parameter values except for the additional convolutional filters (we use Gaussian initialization for them).
  • "Simple Does It" Grabcut Training for Instance Segmentation: This notebook performs training of the SDI Grabcut weakly supervised model for instance segmentation. Following the instructions provided in Section "6. Instance Segmentation Results" of the "Simple Does It" paper, we use the Berkeley-augmented Pascal VOC segmentation dataset that provides per-instance segmentation masks for VOC2012 data. The Berkley augmented dataset can be downloaded from here. Again, the SDI Grabcut training is done using a 4-channel input VGG16 network pre-trained on ImageNet, so make sure to run the VGG16 Net Surgery notebook first!
  • "Simple Does It" Weakly Supervised Instance Segmentation (Testing): The sample results shown in the notebook come from running our trained model on the validation split of the Berkeley-augmented dataset.

Link to Pre-trained model and BK-VOC data files

The pre-processed BK-VOC dataset, "grabcut" segmentations, and results as well as pre-trained models (vgg_16_4chan_weak.ckpt-50000) can be found here:

If you'd rather download the Berkeley-augmented Pascal VOC segmentation dataset that provides per-instance segmentation masks for VOC2012 data from its origin, click here. Then, execute lines similar to these lines in dataset.py to generate the intermediary files used by this project:

if __name__ == '__main__':
    dataset = BKVOCDataset()
    dataset.prepare()

Make sure to set the paths at the top of dataset.py to the correct location:

if sys.platform.startswith("win"):
    _BK_VOC_DATASET = "E:/datasets/bk-voc/benchmark_RELEASE/dataset"
else:
    _BK_VOC_DATASET = '/media/EDrive/datasets/bk-voc/benchmark_RELEASE/dataset'

Training

The fully supervised version of the instance segmentation network whose performance we're trying to match is trained using the RGB images as inputs. The weakly supervised version is trained using 4-channel inputs: RGB + a binary mask with a filled bounding box of the object instance. In the latter case, the same RGB image may appear in several input samples (as many times as there are object instances associated with that RGB image).

To be clear, the output labels used for training are NOT user-provided detailed groundtruth annotations. There are no such groundtruths in the weakly supervised scenario. Instead, the labels are the segmentation masks generated using the GrabCut+ method. The weakly supoervised model is trained to regress from an image and bounding box information to a generated segmentation mask.

Testing

The sample results shown here come from running our trained model on the validation split of the Berkeley-augmented dataset (see the testing notebook). Below, we (very) subjectively categorize them as "pretty good" and "not so great".

Pretty good

Not so great

References

2016

  • [2016a] Khoreva et al. 2016. Simple Does It: Weakly Supervised Instance and Semantic Segmentation. [arXiv] [web]
  • [2016b] Chen et al. 2016. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. [arXiv]
  • [2016c] Caelles et al. 2016. OSVOS: One-Shot Video Object Segmentation. [arXiv]

2015

  • [2015a] Pinheiro et al. 2015. DeepMask: Learning to Segment Object Candidates. [arXiv]

2014

  • [2014a] Lin et al. 2014. Microsoft COCO: Common Objects in Context. [arXiv] [web]
You might also like...
A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains (IJCV submission)
A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains (IJCV submission)

wsss-analysis The code of: A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains, arXiv pre-print 2019 paper.

 Context Decoupling Augmentation for Weakly Supervised Semantic Segmentation
Context Decoupling Augmentation for Weakly Supervised Semantic Segmentation

Context Decoupling Augmentation for Weakly Supervised Semantic Segmentation The code of: Context Decoupling Augmentation for Weakly Supervised Semanti

Discriminative Region Suppression for Weakly-Supervised Semantic Segmentation
Discriminative Region Suppression for Weakly-Supervised Semantic Segmentation

Discriminative Region Suppression for Weakly-Supervised Semantic Segmentation (AAAI 2021) Official pytorch implementation of our paper: Discriminative

Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)

Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021) The implementation of Reducing Infromation Bottleneck for W

Perturbed Self-Distillation: Weakly Supervised Large-Scale Point Cloud Semantic Segmentation (ICCV2021)

Perturbed Self-Distillation: Weakly Supervised Large-Scale Point Cloud Semantic Segmentation (ICCV2021) This is the implementation of PSD (ICCV 2021),

A PyTorch implementation of the paper
A PyTorch implementation of the paper "Semantic Image Synthesis via Adversarial Learning" in ICCV 2017

Semantic Image Synthesis via Adversarial Learning This is a PyTorch implementation of the paper Semantic Image Synthesis via Adversarial Learning. Req

Oriented Response Networks, in CVPR 2017
Oriented Response Networks, in CVPR 2017

Oriented Response Networks [Home] [Project] [Paper] [Supp] [Poster] Torch Implementation The torch branch contains: the official torch implementation

Codes for TS-CAM: Token Semantic Coupled Attention Map for Weakly Supervised Object Localization.
Codes for TS-CAM: Token Semantic Coupled Attention Map for Weakly Supervised Object Localization.

TS-CAM: Token Semantic Coupled Attention Map for Weakly SupervisedObject Localization This is the official implementaion of paper TS-CAM: Token Semant

An official reimplementation of the method described in the INTERSPEECH 2021 paper - Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.
An official reimplementation of the method described in the INTERSPEECH 2021 paper - Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.

Speech Resynthesis from Discrete Disentangled Self-Supervised Representations Implementation of the method described in the Speech Resynthesis from Di

Comments
  • img_mask_pairs.txt

    img_mask_pairs.txt

    I downloaded the benchmark dataset but I did not see the img_mask_pairs.txt file nor any want to generate it. I suspect that I am simply missing something to generate it. Could you provide some insight into how to generate (or download) that file?

    opened by dhpollack 3
  • Model performance

    Model performance

    Hi Phil, Thanks a lot for sharing you code.

    1. I'm wondering the AP performance of your implementation, or could you please release trained model so that I can evaluate the results?
    2. It seems that the Grabcut masks are pre-computed and included in dataset you released. Are these masks generated from the code in "segment.py" ? How long does it take? Many thanks.
    opened by JackieZhangdx 1
  • how to fine-tune?

    how to fine-tune?

    Hi, Thanks for this nice repository. I have 20 different classes of objects. I would like to fine-tune the model with my own dataset. How can I do that? Any insight is highly appreciated.

    opened by monjurulkarim 0
Owner
Phil Ferriere
Former Microsoft Development Lead passionate about Deep Learning with a focus on Computer Vision.
Phil Ferriere
Implementation of EMNLP 2017 Paper "Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog" using PyTorch and ParlAI

Language Emergence in Multi Agent Dialog Code for the Paper Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog Satwik Kottur, José M.

Karan Desai 105 Nov 25, 2022
Recall Loss for Semantic Segmentation (This repo implements the paper: Recall Loss for Semantic Segmentation)

Recall Loss for Semantic Segmentation (This repo implements the paper: Recall Loss for Semantic Segmentation) Download Synthia dataset The model uses

null 32 Sep 21, 2022
Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation

Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation This paper has been accepted and early accessed

Yun Liu 39 Sep 20, 2022
DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision

The Official PyTorch Implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision

Shiyi Lan 3 Oct 15, 2021
The PyTorch implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision.

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision The PyTorch implementation of DiscoBox: Weakly Supe

Shiyi Lan 1 Oct 23, 2021
Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation (CVPR 2021)

Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation Input Image Initial CAM Successive Maps with adversar

Jungbeom Lee 110 Dec 7, 2022
Contrastive learning of Class-agnostic Activation Map for Weakly Supervised Object Localization and Semantic Segmentation (CVPR 2022)

CCAM (Unsupervised) Code repository for our paper "CCAM: Contrastive learning of Class-agnostic Activation Map for Weakly Supervised Object Localizati

Computer Vision Insitute, SZU 113 Dec 27, 2022
Code for the paper One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation, CVPR 2021.

One Thing One Click One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation (CVPR2021) Code for the paper One Thi

null 44 Dec 12, 2022
[CVPR'22] Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast

wseg Overview The Pytorch implementation of Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast. [arXiv] Though image-level weakly

Ye Du 96 Dec 30, 2022
Weakly Supervised Dense Event Captioning in Videos, i.e. generating multiple sentence descriptions for a video in a weakly-supervised manner.

WSDEC This is the official repo for our NeurIPS paper Weakly Supervised Dense Event Captioning in Videos. Description Repo directories ./: global conf

Melon(Xuguang Duan) 96 Nov 1, 2022