Efficient Online Bayesian Inference for Neural Bandits

Overview

Efficient Online Bayesian Inference for Neural Bandits

By Gerardo Durán-Martín, Aleyna Kara, and Kevin Murphy
AISTATS 2022. https://arxiv.org/abs/2112.00195

MNIST-experiment


Installation

pip install fire
pip install ml-collections

Reproduce the results

There are two ways to reproduce the results from the paper

Run the scripts

To reproduce the results, cd into the project folder and run

python bandits test
python bandits run_and_plot

Step by step

If you only want to reproduce the results, run

python bandits run_experiments

If you have previously reproduced the results and want to reproduce the plots, run

python bandits plot_experiments

The results will be stored inside bandits/figures/.

Execute the notebooks

An alternative way to reproduce the results is to simply open and run subspace_bandits.ipynb

You might also like...
Torchserve server using a YoloV5 model running on docker with GPU and static batch inference to perform production ready inference.
Torchserve server using a YoloV5 model running on docker with GPU and static batch inference to perform production ready inference.

Yolov5 running on TorchServe (GPU compatible) ! This is a dockerfile to run TorchServe for Yolo v5 object detection model. (TorchServe (PyTorch librar

Monocular 3D pose estimation. OpenVINO. CPU inference or iGPU (OpenCL) inference.
Monocular 3D pose estimation. OpenVINO. CPU inference or iGPU (OpenCL) inference.

human-pose-estimation-3d-python-cpp RealSenseD435 (RGB) 480x640 + CPU Corei9 45 FPS (Depth is not used) 1. Run 1-1. RealSenseD435 (RGB) 480x640 + CPU

PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices.

PyTorch-LIT PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices. With

Data-depth-inference - Data depth inference with python
Data-depth-inference - Data depth inference with python

Welcome! This readme will guide you through the use of the code in this reposito

Learning Efficient Online 3D Bin Packing on Packing Configuration Trees
Learning Efficient Online 3D Bin Packing on Packing Configuration Trees

Learning Efficient Online 3D Bin Packing on Packing Configuration Trees This repository is being continuously updated, please stay tuned! Any code con

Colar: Effective and Efficient Online Action Detection by Consulting Exemplars, CVPR 2022.
Colar: Effective and Efficient Online Action Detection by Consulting Exemplars, CVPR 2022.

Colar: Effective and Efficient Online Action Detection by Consulting Exemplars This repository is the official implementation of Colar. In this work,

Repository for
Repository for "Exploring Sparsity in Image Super-Resolution for Efficient Inference", CVPR 2021

SMSR Reposity for "Exploring Sparsity in Image Super-Resolution for Efficient Inference" [arXiv] Highlights Locate and skip redundant computation in S

This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CNPs), Neural Processes (NPs), Attentive Neural Processes (ANPs).

The Neural Process Family This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CN

Code for
Code for "Infinitely Deep Bayesian Neural Networks with Stochastic Differential Equations"

Infinitely Deep Bayesian Neural Networks with SDEs This library contains JAX and Pytorch implementations of neural ODEs and Bayesian layers for stocha

Comments
Owner
Probabilistic machine learning
Material to accompany the book "Machine Learning: A Probabilistic Perspective" (Software, Data, Exercises, Figures, etc)
Probabilistic machine learning
Source code and data from the RecSys 2020 article "Carousel Personalization in Music Streaming Apps with Contextual Bandits" by W. Bendada, G. Salha and T. Bontempelli

Carousel Personalization in Music Streaming Apps with Contextual Bandits - RecSys 2020 This repository provides Python code and data to reproduce expe

Deezer 48 Jan 2, 2023
Code for the Population-Based Bandits Algorithm, presented at NeurIPS 2020.

Population-Based Bandits (PB2) Code for the Population-Based Bandits (PB2) Algorithm, from the paper Provably Efficient Online Hyperparameter Optimiza

Jack Parker-Holder 22 Nov 16, 2022
This GitHub repository contains code used for plots in NeurIPS 2021 paper 'Stochastic Multi-Armed Bandits with Control Variates.'

About Repository This repository contains code used for plots in NeurIPS 2021 paper 'Stochastic Multi-Armed Bandits with Control Variates.' About Code

Arun Verma 1 Nov 9, 2021
aka "Bayesian Methods for Hackers": An introduction to Bayesian methods + probabilistic programming with a computation/understanding-first, mathematics-second point of view. All in pure Python ;)

Bayesian Methods for Hackers Using Python and PyMC The Bayesian method is the natural approach to inference, yet it is hidden from readers behind chap

Cameron Davidson-Pilon 25.1k Jan 2, 2023
Python Library for learning (Structure and Parameter) and inference (Statistical and Causal) in Bayesian Networks.

pgmpy pgmpy is a python library for working with Probabilistic Graphical Models. Documentation and list of algorithms supported is at our official sit

pgmpy 2.2k Jan 3, 2023
Python package facilitating the use of Bayesian Deep Learning methods with Variational Inference for PyTorch

PyVarInf PyVarInf provides facilities to easily train your PyTorch neural network models using variational inference. Bayesian Deep Learning with Vari

null 342 Dec 2, 2022
PPLNN is a Primitive Library for Neural Network is a high-performance deep-learning inference engine for efficient AI inferencing

PPLNN is a Primitive Library for Neural Network is a high-performance deep-learning inference engine for efficient AI inferencing

null 943 Jan 7, 2023
PyTorch Implementation of [1611.06440] Pruning Convolutional Neural Networks for Resource Efficient Inference

PyTorch implementation of [1611.06440 Pruning Convolutional Neural Networks for Resource Efficient Inference] This demonstrates pruning a VGG16 based

Jacob Gildenblat 836 Dec 26, 2022
Official Pytorch implementation of Online Continual Learning on Class Incremental Blurry Task Configuration with Anytime Inference (ICLR 2022)

The Official Implementation of CLIB (Continual Learning for i-Blurry) Online Continual Learning on Class Incremental Blurry Task Configuration with An

NAVER AI 34 Oct 26, 2022