Responsible AI Workshop: a series of tutorials & walkthroughs to illustrate how put responsible AI into practice

Overview

Responsible AI Workshop

Workshop logo

Responsible innovation is top of mind. As such, the tech industry as well as a growing number of organizations of all kinds in their digital transformation are being called upon to develop and deploy Artificial Intelligence (AI) technologies and Machine Learning (ML)-powered systems (products or services) and/or features (all referred as to AI systems below) more responsibly. And yet many organizations implementing such AI systems report being unprepared to address AI risks and failures, and struggle with new challenges in terms of governance, security and compliance.

Advancements in AI are indeed different than other technologies because of the pace of innovation. There has been hundreds of research papers published every year in the past few years -, but also because of its proximity to human intelligence, impacting us at a personal and societal level.

There are a number of challenges and questions raised through the use of AI technologies. We refer to these as socio-technical impacts. All of these have given rise to an industry debate about how the world should/shouldn't use these new capabilities. It isn't because you can do something that you should necessarily do it.

This project is an attempt to introduce and illustrate the use of:

  • Resources designed to help you responsibly use AI at every stage of innovation - from concept to development, deployment, and beyond.
  • Available toolkits & frameworks that help you integrate relevant Responsible AI features into your AI environment by themes and through the lifecycle stages of your AI system.

It is thus designed to help you or your "customers", whoever they are, to put Responsible AI into practice for your AI-powered solutions throughout their lifecycle.

Workshop Tutorials/Walkthroughs

Work in Progress

This project is a work in progress (WIP).

This project currently contains the following tutorials:

Each of the above tutorials consists of a series of modules for data engineers, data scientists, ML developers, ML engineers, and other AI practitioners, as well as potentially anyone interested considering the wide range of socio-technical aspects involved in the subject.

Prerequisites

The workshop is meant to be hands-on. Therefore, basic knowledge of any version of Python is a prerequisite. It also assumes that you have prior experience training machine learning (ML) models with Python using open-source frameworks like Scikit-Learn, PyTorch, and TensorFlow.

One should also note that this workshop might also be introduced by the following Microsoft Learn learning paths:

Additional resources

From holistically transforming industries to addressing critical issues facing humanity, AI is already solving some of our most complex challenges and redefining how humans and technology interact.

You can visit our Responsible AI resource center where you can find access to tools, guidelines, and additional resources that will help you create a (more) Responsible AI solution:

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Legal Notices

Microsoft and any contributors grant you a license to the Microsoft documentation and other content in this repository under the Creative Commons Attribution 4.0 International Public License, see the LICENSE file, and grant you a license to any code in the repository under the MIT License, see the LICENSE-CODE file.

Microsoft, Windows, Microsoft Azure and/or other Microsoft products and services referenced in the documentation may be either trademarks or registered trademarks of Microsoft in the United States and/or other countries. The licenses for this project do not grant you rights to use any Microsoft names, logos, or trademarks. Microsoft's general trademark guidelines can be found at http://go.microsoft.com/fwlink/?LinkID=254653.

Privacy information can be found at https://privacy.microsoft.com/en-us/

Microsoft and any contributors reserve all other rights, whether under their respective copyrights, patents, or trademarks, whether by implication, estoppel or otherwise.

You might also like...
Probabilistic time series modeling in Python
Probabilistic time series modeling in Python

GluonTS - Probabilistic Time Series Modeling in Python GluonTS is a Python toolkit for probabilistic time series modeling, built around Apache MXNet (

A python library for easy manipulation and forecasting of time series.
A python library for easy manipulation and forecasting of time series.

Time Series Made Easy in Python darts is a python library for easy manipulation and forecasting of time series. It contains a variety of models, from

STUMPY is a powerful and scalable Python library for computing a Matrix Profile, which can be used for a variety of time series data mining tasks
STUMPY is a powerful and scalable Python library for computing a Matrix Profile, which can be used for a variety of time series data mining tasks

STUMPY STUMPY is a powerful and scalable library that efficiently computes something called the matrix profile, which can be used for a variety of tim

A Python package for time series classification

pyts: a Python package for time series classification pyts is a Python package for time series classification. It aims to make time series classificat

Time series forecasting with PyTorch

Our article on Towards Data Science introduces the package and provides background information. Pytorch Forecasting aims to ease state-of-the-art time

Python module for machine learning time series:

seglearn Seglearn is a python package for machine learning time series or sequences. It provides an integrated pipeline for segmentation, feature extr

Automatically build ARIMA, SARIMAX, VAR, FB Prophet and XGBoost Models on Time Series data sets with a Single Line of Code. Now updated with Dask to handle millions of rows.
Automatically build ARIMA, SARIMAX, VAR, FB Prophet and XGBoost Models on Time Series data sets with a Single Line of Code. Now updated with Dask to handle millions of rows.

Auto_TS: Auto_TimeSeries Automatically build multiple Time Series models using a Single Line of Code. Now updated with Dask. Auto_timeseries is a comp

A Python toolkit for rule-based/unsupervised anomaly detection in time series

Anomaly Detection Toolkit (ADTK) Anomaly Detection Toolkit (ADTK) is a Python package for unsupervised / rule-based time series anomaly detection. As

AtsPy: Automated Time Series Models in Python (by @firmai)
AtsPy: Automated Time Series Models in Python (by @firmai)

Automated Time Series Models in Python (AtsPy) SSRN Report Easily develop state of the art time series models to forecast univariate data series. Simp

Comments
  • responsible_ai_lifecycle_walkthrough Notebook fails to render

    responsible_ai_lifecycle_walkthrough Notebook fails to render

    Looks like the notebook rendering of the ExplanationDashboard loads all javascript libraries causing the Notebook to blow out in size. GitHub can't render it, and Jupyter won't load it. Had to download, rename to .json, cut those cells out manually, and rename back to .ipynb. Suggested loading notebook without rendered Dashboard.

    opened by krisbock 0
Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
Causal Inference and Machine Learning in Practice with EconML and CausalML: Industrial Use Cases at Microsoft, TripAdvisor, Uber

Causal Inference and Machine Learning in Practice with EconML and CausalML: Industrial Use Cases at Microsoft, TripAdvisor, Uber

EconML/CausalML KDD 2021 Tutorial 124 Dec 28, 2022
Houseprices - Predict sales prices and practice feature engineering, RFs, and gradient boosting

House Prices - Advanced Regression Techniques Predicting House Prices with Machine Learning This project is build to enhance my knowledge about machin

null 1 Jan 1, 2022
Microsoft contributing libraries, tools, recipes, sample codes and workshop contents for machine learning & deep learning.

Microsoft contributing libraries, tools, recipes, sample codes and workshop contents for machine learning & deep learning.

Microsoft 366 Jan 3, 2023
A machine learning toolkit dedicated to time-series data

tslearn The machine learning toolkit for time series analysis in Python Section Description Installation Installing the dependencies and tslearn Getti

null 2.3k Jan 5, 2023
Tool for producing high quality forecasts for time series data that has multiple seasonality with linear or non-linear growth.

Prophet: Automatic Forecasting Procedure Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends ar

Facebook 15.4k Jan 7, 2023
Open source time series library for Python

PyFlux PyFlux is an open source time series library for Python. The library has a good array of modern time series models, as well as a flexible array

Ross Taylor 2k Jan 2, 2023
Automatic extraction of relevant features from time series:

tsfresh This repository contains the TSFRESH python package. The abbreviation stands for "Time Series Feature extraction based on scalable hypothesis

Blue Yonder GmbH 7k Jan 6, 2023
A unified framework for machine learning with time series

Welcome to sktime A unified framework for machine learning with time series We provide specialized time series algorithms and scikit-learn compatible

The Alan Turing Institute 6k Jan 6, 2023
A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.

pmdarima Pmdarima (originally pyramid-arima, for the anagram of 'py' + 'arima') is a statistical library designed to fill the void in Python's time se

alkaline-ml 1.3k Dec 22, 2022
A machine learning toolkit dedicated to time-series data

tslearn The machine learning toolkit for time series analysis in Python Section Description Installation Installing the dependencies and tslearn Getti

null 2.3k Dec 29, 2022