MAUS: A Dataset for Mental Workload Assessment Using Wearable Sensor - Baseline system
Getting started
To start working on this assignment, you should clone this repository into your local machine by using the following command.
git clone https://github.com/rickwu11/MAUS_dataset_baseline_system.git
Dependencies
Baseline system of MAUS requires the following:
- Python (>= 3.5)
- numpy >= 1.19.5
- scipy >= 1.5.4
- pandas >= 1.1.5
- matplotlib >=3.3.4
- statsmodels >= 0.12.2
- pyhrv >= 0.4.0
- biosppy >= 0.7.0
- EMD-signal >= 0.2.15
Dataset downloading
The MAUS dataset can be downloaded from: http://ieee-dataport.org/4216. Extract the .zip file under this folder.
Baseline system running
The extracted features were provided for classification under the folder: ./feature_data
Peak detection, extract inter-beat intervals (IBI)
python3 peak_detection.py --src_data
--dst_data
--single_sub
--sub_id
--rest_data
: (str) Raw signal datapath; Default: ./MAUC/Data/Raw_data
: (str) Extract IBI sequence datapath; Default: ./MAUC/Data/
: (bool) Extract IBI sequence from single subject; Default: True
: (str) ID of the single subject; Default: 002
: (bool) Extract resting IBI sequence; Default: False
HRV features extraction
python3 HRV_feature_extraction.py --data
: (str) Inter-beat Intervals (IBI) sequence path; Default: ./MAUC/Data/IBI_sequence/
Classification
python3 classification.py --data
--mode
: (str) feature data path; Default: ./feature_data
: (str) validation type; Default: LOSO
- LOSO: leave-one-subject-out cross validation
- Mixed: mixed-subject 5-fold cross validation