Scikit-Learn useful pre-defined Pipelines Hub

Overview

Tests Codecov PythonVersion PyPi Docs

https://github.com/rodrigo-arenas/scikit-pipes/blob/master/docs/images/logo16.png?raw=true

Scikit-Pipes

Scikit-Learn useful pre-defined Pipelines Hub

Usage:

Install scikit-pipes

It's advised to install sklearn-genetic using a virtual env, inside the env use:

pip install scikit-pipes

Example: Simple Preprocessing

import pandas as pd
import numpy as np
from skpipes.pipeline import SkPipeline

data = [{"x1": 1, "x2": 400, "x3": np.nan},
        {"x1": 4.8, "x2": 250, "x3": 50},
        {"x1": 3, "x2": 140, "x3": 43},
        {"x1": 1.4, "x2": 357, "x3": 75},
        {"x1": 2.4, "x2": np.nan, "x3": 42},
        {"x1": 4, "x2": 287, "x3": 21}]

df = pd.DataFrame(data)

pipe = SkPipeline(name='imputer_median-minmax',
                  data_type="numerical")
pipe.steps
str(pipe)

pipe.fit(df)
pipe.transform(df)
pipe.fit_transform(df)

Changelog

See the changelog for notes on the changes of Sklearn-genetic-opt

Important links

Source code

You can check the latest development version with the command:

git clone https://github.com/rodrigo-arenas/scikit-pipes.git

Install the development dependencies:

pip install -r dev-requirements.txt

Check the latest in-development documentation: https://scikit-pipes.readthedocs.io/en/latest/

Testing

After installation, you can launch the test suite from outside the source directory:

pytest skpipes
You might also like...
 Interactive Web App with Streamlit and Scikit-learn that applies different Classification algorithms to popular datasets
Interactive Web App with Streamlit and Scikit-learn that applies different Classification algorithms to popular datasets

Interactive Web App with Streamlit and Scikit-learn that applies different Classification algorithms to popular datasets Datasets Used: Iris dataset,

K-Means clusternig example with Python and Scikit-learn
K-Means clusternig example with Python and Scikit-learn

Unsupervised-Machine-Learning Flat Clustering K-Means clusternig example with Python and Scikit-learn Flat clustering Clustering algorithms group a se

Predicting Baseball Metric Clusters: Clustering Application in Python Using scikit-learn
Predicting Baseball Metric Clusters: Clustering Application in Python Using scikit-learn

Clustering Clustering Application in Python Using scikit-learn This repository contains the prediction of baseball metric clusters using MLB Statcast

To design and implement the Identification of Iris Flower species using machine learning using Python and the tool Scikit-Learn.

To design and implement the Identification of Iris Flower species using machine learning using Python and the tool Scikit-Learn.

Painless Machine Learning for python based on scikit-learn

PlainML Painless Machine Learning Library for python based on scikit-learn. Install pip install plainml Example from plainml import KnnModel, load_ir

icepickle is to allow a safe way to serialize and deserialize linear scikit-learn models
icepickle is to allow a safe way to serialize and deserialize linear scikit-learn models

icepickle It's a cooler way to store simple linear models. The goal of icepickle is to allow a safe way to serialize and deserialize linear scikit-lea

A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.
A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.

Master status: Development status: Package information: TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assista

A project based example of Data pipelines, ML workflow management, API endpoints and Monitoring.
A project based example of Data pipelines, ML workflow management, API endpoints and Monitoring.

MLOps template with examples for Data pipelines, ML workflow management, API development and Monitoring.

ZenML 🙏: MLOps framework to create reproducible ML pipelines for production machine learning.
ZenML 🙏: MLOps framework to create reproducible ML pipelines for production machine learning.

ZenML is an extensible, open-source MLOps framework to create production-ready machine learning pipelines. It has a simple, flexible syntax, is cloud and tool agnostic, and has interfaces/abstractions that are catered towards ML workflows.

Owner
Rodrigo Arenas
Rodrigo Arenas
PySpark + Scikit-learn = Sparkit-learn

Sparkit-learn PySpark + Scikit-learn = Sparkit-learn GitHub: https://github.com/lensacom/sparkit-learn About Sparkit-learn aims to provide scikit-lear

Lensa 1.1k Jan 4, 2023
A scikit-learn based module for multi-label et. al. classification

scikit-multilearn scikit-multilearn is a Python module capable of performing multi-label learning tasks. It is built on-top of various scientific Pyth

null 802 Jan 1, 2023
Highly interpretable classifiers for scikit learn, producing easily understood decision rules instead of black box models

Highly interpretable, sklearn-compatible classifier based on decision rules This is a scikit-learn compatible wrapper for the Bayesian Rule List class

Tamas Madl 482 Nov 19, 2022
Automated Machine Learning with scikit-learn

auto-sklearn auto-sklearn is an automated machine learning toolkit and a drop-in replacement for a scikit-learn estimator. Find the documentation here

AutoML-Freiburg-Hannover 6.7k Jan 7, 2023
Relevance Vector Machine implementation using the scikit-learn API.

scikit-rvm scikit-rvm is a Python module implementing the Relevance Vector Machine (RVM) machine learning technique using the scikit-learn API. Quicks

James Ritchie 204 Nov 18, 2022
Distributed scikit-learn meta-estimators in PySpark

sk-dist: Distributed scikit-learn meta-estimators in PySpark What is it? sk-dist is a Python package for machine learning built on top of scikit-learn

Ibotta 282 Dec 9, 2022
Iris species predictor app is used to classify iris species created using python's scikit-learn, fastapi, numpy and joblib packages.

Iris Species Predictor Iris species predictor app is used to classify iris species using their sepal length, sepal width, petal length and petal width

Siva Prakash 5 Apr 5, 2022
A collection of Scikit-Learn compatible time series transformers and tools.

tsfeast A collection of Scikit-Learn compatible time series transformers and tools. Installation Create a virtual environment and install: From PyPi p

Chris Santiago 0 Mar 30, 2022
Penguins species predictor app is used to classify penguins species created using python's scikit-learn, fastapi, numpy and joblib packages.

Penguins Classification App Penguins species predictor app is used to classify penguins species using their island, sex, bill length (mm), bill depth

Siva Prakash 3 Apr 5, 2022
Scikit learn library models to account for data and concept drift.

liquid_scikit_learn Scikit learn library models to account for data and concept drift. This python library focuses on solving data drift and concept d

null 7 Nov 18, 2021