Scales, Chords, and Cadences: Practical Music Theory for MIR Researchers

Overview

ISMIR-musicTheoryTutorial

This repository has slides and Jupyter notebooks for the ISMIR 2021 tutorial Scales, Chords, and Cadences: Practical Music Theory for MIR Researchers (https://ismir2021.ismir.net/tutorials/#3-scales-chords-and-cadences-practical-music-theory-for-mir-researchers)

Tutorial Bibliography

https://www.zotero.org/groups/4502273/ismir-musictheorytutorial

Tutorial Description

Much pitch-related MIR research builds either implicitly or explicitly on music-theoretic domain knowledge. Unfortunately, music theory is an esoteric discipline, with many of its canonical organizational principles presented in textbooks with dozens of classical musical examples and little indication of how these principles can be applied to other musical traditions. This tutorial will introduce fundamental pitch-related concepts in music theory for the ISMIR community and relate them to tasks associated with melodic, chord, and structural audio analysis for a range of musical styles. It will include sections on the scales, chords, and cadences routinely associated with Western art music of the common-practice tradition (~1650-1900), as well as non-Western folk musics and the popular music traditions of the twentieth and twenty-first centuries. The three sections will be broken down as follows, with both lecture and hands-on coding demonstration components:

Scales

-Scale formation (octave equivalence, mathematical properties)

-Scale and mode types (western and non-Western)

-Implications for scale and key identification, automatic melody extraction

Chords

-Types (triads, seventh chords, extensions)

-Representation schemes (e.g., chord labeling)

-Syntactic principles (e.g., functional harmony, grammars)

-Implications for automatic chord recognition, pattern discovery

Cadences

-Types

-Linear/voice-leading patterns

-Relationship to large-scale formal types (phrases, themes, sonata, etc.)

-Implications for cadence discovery/classification, automatic segmentation

This tutorial will be of interest to a broad range of the ISMIR community, but will be of specific interest to MIR researchers with limited formal training in music theory. This workshop assumes a basic understanding of musical notation, but does not assume prior knowledge of Western music theory. It will be accessible to researchers new to the field, but will also be of interest to experienced researchers hoping to incorporate more music-theoretically based models into their research.

You might also like...
This repository builds a basic vision transformer from scratch so that one beginner can understand the theory of vision transformer.

vision-transformer-from-scratch This repository includes several kinds of vision transformers from scratch so that one beginner can understand the the

Rasterize with the least efforts for researchers.

utils3d Rasterize and do image-based 3D transforms with the least efforts for researchers. Based on numpy and OpenGL. It could be helpful when you wan

E2e music remastering system - End-to-end Music Remastering System Using Self-supervised and Adversarial Training
E2e music remastering system - End-to-end Music Remastering System Using Self-supervised and Adversarial Training

End-to-end Music Remastering System This repository includes source code and pre

PyTorch implementation of ECCV 2020 paper "Foley Music: Learning to Generate Music from Videos "

Foley Music: Learning to Generate Music from Videos This repo holds the code for the framework presented on ECCV 2020. Foley Music: Learning to Genera

All the essential resources and template code needed to understand and practice data structures and algorithms in python with few small projects to demonstrate their practical application.

Data Structures and Algorithms Python INDEX 1. Resources - Books Data Structures - Reema Thareja competitiveCoding Big-O Cheat Sheet DAA Syllabus Inte

A scientific and useful toolbox, which contains practical and effective long-tail related tricks with extensive experimental results

Bag of tricks for long-tailed visual recognition with deep convolutional neural networks This repository is the official PyTorch implementation of AAA

This project is based on RIFE and aims to make RIFE more practical for users by adding various features and design new models
This project is based on RIFE and aims to make RIFE more practical for users by adding various features and design new models

This project is based on RIFE and aims to make RIFE more practical for users by adding various features and design new models. Because improving the PSNR index is not compatible with subjective effects, we hope this part of work and our academic research are independent of each other.

Adaout is a practical and flexible regularization method with high generalization and interpretability

Adaout Adaout is a practical and flexible regularization method with high generalization and interpretability. Requirements python 3.6 (Anaconda versi

Code for the paper:
Code for the paper: "On the Bottleneck of Graph Neural Networks and Its Practical Implications"

On the Bottleneck of Graph Neural Networks and its Practical Implications This is the official implementation of the paper: On the Bottleneck of Graph

Owner
Johanna Devaney
Johanna Devaney
A modular, research-friendly framework for high-performance and inference of sequence models at many scales

T5X T5X is a modular, composable, research-friendly framework for high-performance, configurable, self-service training, evaluation, and inference of

Google Research 1.1k Jan 8, 2023
This is the repository for CVPR2021 Dynamic Metric Learning: Towards a Scalable Metric Space to Accommodate Multiple Semantic Scales

Intro This is the repository for CVPR2021 Dynamic Metric Learning: Towards a Scalable Metric Space to Accommodate Multiple Semantic Scales Vehicle Sam

null 39 Jul 21, 2022
ElegantRL is featured with lightweight, efficient and stable, for researchers and practitioners.

Lightweight, efficient and stable implementations of deep reinforcement learning algorithms using PyTorch. ??

AI4Finance 2.5k Jan 8, 2023
A PyTorch-based open-source framework that provides methods for improving the weakly annotated data and allows researchers to efficiently develop and compare their own methods.

Knodle (Knowledge-supervised Deep Learning Framework) - a new framework for weak supervision with neural networks. It provides a modularization for se

null 93 Nov 6, 2022
Toolbox of models, callbacks, and datasets for AI/ML researchers.

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch Website • Installation • Main

Pytorch Lightning 1.4k Dec 30, 2022
BisQue is a web-based platform designed to provide researchers with organizational and quantitative analysis tools for 5D image data. Users can extend BisQue by implementing containerized ML workflows.

Overview BisQue is a web-based platform specifically designed to provide researchers with organizational and quantitative analysis tools for up to 5D

Vision Research Lab @ UCSB 26 Nov 29, 2022
Numenta Platform for Intelligent Computing is an implementation of Hierarchical Temporal Memory (HTM), a theory of intelligence based strictly on the neuroscience of the neocortex.

NuPIC Numenta Platform for Intelligent Computing The Numenta Platform for Intelligent Computing (NuPIC) is a machine intelligence platform that implem

Numenta 6.3k Dec 30, 2022
Numenta Platform for Intelligent Computing is an implementation of Hierarchical Temporal Memory (HTM), a theory of intelligence based strictly on the neuroscience of the neocortex.

NuPIC Numenta Platform for Intelligent Computing The Numenta Platform for Intelligent Computing (NuPIC) is a machine intelligence platform that implem

Numenta 6.2k Feb 12, 2021
Fedlearn支持前沿算法研发的Python工具库 | Fedlearn algorithm toolkit for researchers

FedLearn-algo Installation Development Environment Checklist python3 (3.6 or 3.7) is required. To configure and check the development environment is c

null 89 Nov 14, 2022
A GPU-optional modular synthesizer in pytorch, 16200x faster than realtime, for audio ML researchers.

torchsynth The fastest synth in the universe. Introduction torchsynth is based upon traditional modular synthesis written in pytorch. It is GPU-option

torchsynth 229 Jan 2, 2023