Over-the-Air Ensemble Inference with Model Privacy
This repository contains simulations for our private ensemble inference method.
Installation
- Install conda and torch manually (recommended)
pip install -r requirements.txt
Running
- First train and cache the device models.
- Then you can generate figures, tables or run raw experiments.
Training CV models
python train.py --data
--num_repeats 10 --num_devices 20 --num_epochs 50 cifar10
,cifar100
,mnist
,fashionmnist
Training NLP models
python nlp_train.py --data
--num_repeats 10 --num_devices 20 yelp_review_full
,yelp_polarity
,imdb
,emotion
Running an Experiment
- See the bottom of
ota_private_ensemble.py
Generating TeX Code for the Comparison table
- Run
python figure_comparison_table.py
### Generate TeX Code for the Varying Conditions pgfplot
- Run
python figure_conditions.py