Source Code for ICSE 2022 Paper - ``Can We Achieve Fairness Using Semi-Supervised Learning?''

Overview

Fair-SSL

Source Code for ICSE 2022 Paper - Can We Achieve Fairness Using Semi-Supervised Learning?

Ethical bias in machine learning models has become a matter of concern in the software engineering community. Most of the prior software engineering works concentrated on finding ethical bias in models rather than fixing it. After finding bias, the next step is mitigation. Prior researchers mainly tried to use supervised approaches to achieve fairness. However, in the real world, getting data with trustworthy ground truth is challenging and also ground truth can contain human bias. Semi-supervised learning is a domain of machine learning where labeled and unlabeled data both are used to overcome the data labeling challenges. We, in this work, applied four popular semi-supervised techniques as pseudo-labelers to create fair classification models. Our framework, Fair-SSL, takes a very small amount (10%) of labeled data as input and generates pseudo-labels for the unlabeled data. We then synthetically generate new data points to balance the training data based on class and protected attribute as proposed by Chakraborty et al. in FSE 2021. Finally, classification model is trained on the balanced pseudo-labeled data and validated on test data. After experimenting on ten datasets and three learners, we found out that Fair-SSL achieves similar performance like three other state-of-the-art bias mitigation algorithms. Where prior algorithms require much training data, Fair-SSL requires only 10% of the labeled training data. As per our knowledge, this is the first SE work where semi-supervised techniques are used to fight against ethical bias in ML models.

Dataset Description -

1> Adult Income dataset - http://archive.ics.uci.edu/ml/datasets/Adult

2> COMPAS - https://github.com/propublica/compas-analysis

3> German Credit - https://archive.ics.uci.edu/ml/datasets/Statlog+%28German+Credit+Data%29

4> Bank Marketing - https://archive.ics.uci.edu/ml/datasets/bank+marketing

5> Default Credit - https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients

6> Heart - https://archive.ics.uci.edu/ml/datasets/Heart+Disease

7> MEPS - https://meps.ahrq.gov/mepsweb/

8> Student - https://archive.ics.uci.edu/ml/datasets/Student+Performance

9> Home Credit - https://www.kaggle.com/c/home-credit-default-risk

Data Preprocessing -

  • We have used data preprocessing as suggested by IBM AIF360
  • The rows containing missing values are ignored, continuous features are converted to categorical (e.g., age<25: young,age>=25: old), non-numerical features are converted to numerical(e.g., male: 1, female: 0). Fiinally, all the feature values are normalized(converted between 0 to 1).
  • For optimized Pre-processing, plaese visit Optimized Preprocessing
You might also like...
PyTorch code for the paper: FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning
PyTorch code for the paper: FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning

FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning This is the PyTorch implementation of our paper: FeatMatch: Feature-Based Augmentat

The code for our paper Semi-Supervised Learning with Multi-Head Co-Training
The code for our paper Semi-Supervised Learning with Multi-Head Co-Training

Semi-Supervised Learning with Multi-Head Co-Training (PyTorch) Abstract Co-training, extended from self-training, is one of the frameworks for semi-su

CoSMA: Convolutional Semi-Regular Mesh Autoencoder. From Paper
CoSMA: Convolutional Semi-Regular Mesh Autoencoder. From Paper "Mesh Convolutional Autoencoder for Semi-Regular Meshes of Different Sizes"

Mesh Convolutional Autoencoder for Semi-Regular Meshes of Different Sizes Implementation of CoSMA: Convolutional Semi-Regular Mesh Autoencoder arXiv p

Hybrid CenterNet - Hybrid-supervised object detection / Weakly semi-supervised object detection
Hybrid CenterNet - Hybrid-supervised object detection / Weakly semi-supervised object detection

Hybrid-Supervised Object Detection System Object detection system trained by hybrid-supervision/weakly semi-supervision (HSOD/WSSOD): This project is

Imposter-detector-2022 - HackED 2022 Team 3IQ - 2022 Imposter Detector
Imposter-detector-2022 - HackED 2022 Team 3IQ - 2022 Imposter Detector

HackED 2022 Team 3IQ - 2022 Imposter Detector By Aneeljyot Alagh, Curtis Kan, Jo

ICLR 2021, Fair Mixup: Fairness via Interpolation

Fair Mixup: Fairness via Interpolation Training classifiers under fairness constraints such as group fairness, regularizes the disparities of predicti

Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch
Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch

Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch

Computationally Efficient Optimization of Plackett-Luce Ranking Models for Relevance and Fairness

Computationally Efficient Optimization of Plackett-Luce Ranking Models for Relevance and Fairness This repository contains the code used for the exper

The audio-video synchronization of MKV Container Format is exploited to achieve data hiding
The audio-video synchronization of MKV Container Format is exploited to achieve data hiding

The audio-video synchronization of MKV Container Format is exploited to achieve data hiding, where the hidden data can be utilized for various management purposes, including hyper-linking, annotation, and authentication

Owner
null
Code for reproducing our analysis in the paper titled: Image Cropping on Twitter: Fairness Metrics, their Limitations, and the Importance of Representation, Design, and Agency

Image Crop Analysis This is a repo for the code used for reproducing our Image Crop Analysis paper as shared on our blog post. If you plan to use this

Twitter Research 239 Jan 2, 2023
Project looking into use of autoencoder for semi-supervised learning and comparing data requirements compared to supervised learning.

Project looking into use of autoencoder for semi-supervised learning and comparing data requirements compared to supervised learning.

Tom-R.T.Kvalvaag 2 Dec 17, 2021
[CVPR 2022] Semi-Supervised Semantic Segmentation Using Unreliable Pseudo-Labels

Using Unreliable Pseudo Labels Official PyTorch implementation of Semi-Supervised Semantic Segmentation Using Unreliable Pseudo Labels, CVPR 2022. Ple

Haochen Wang 268 Dec 24, 2022
ISBI 2022: Cross-level Contrastive Learning and Consistency Constraint for Semi-supervised Medical Image.

Cross-level Contrastive Learning and Consistency Constraint for Semi-supervised Medical Image Introduction This repository contains the PyTorch implem

null 25 Nov 9, 2022
code for paper "Not All Unlabeled Data are Equal: Learning to Weight Data in Semi-supervised Learning" by Zhongzheng Ren*, Raymond A. Yeh*, Alexander G. Schwing.

Not All Unlabeled Data are Equal: Learning to Weight Data in Semi-supervised Learning Overview This code is for paper: Not All Unlabeled Data are Equa

Jason Ren 22 Nov 23, 2022
UniMoCo: Unsupervised, Semi-Supervised and Full-Supervised Visual Representation Learning

UniMoCo: Unsupervised, Semi-Supervised and Full-Supervised Visual Representation Learning This is the official PyTorch implementation for UniMoCo pape

dddzg 49 Jan 2, 2023
using STGCN to achieve egg classification task

EEG Classification   The task requires us to classify electroencephalography(EEG) into six categories, including human body, human face, animal body,

null 4 Jun 13, 2022
Source codes for the paper "Local Additivity Based Data Augmentation for Semi-supervised NER"

LADA This repo contains codes for the following paper: Jiaao Chen*, Zhenghui Wang*, Ran Tian, Zichao Yang, Diyi Yang: Local Additivity Based Data Augm

GT-SALT 36 Dec 2, 2022