TipToiDog - Tip Toi Dog With Python

Overview

TipToiDog

Was ist dieses Projekt?

Meine 5-jährige Tochter spielt sehr gerne das Quiz Wer kennt alle Hunde. Dabei interessiert sie sich gar nicht so sehr für die Details auf der Rückseite der Quizkarten, sondern hauptsächlich für die Hundenamen. Da sie aber noch nicht lesen kann, kann sie das Quiz nicht alleine machen. Da kam mir die Idee, den TipToi-Stift von Ravensburger dafür einzusetzen, dass sie das Spiel doch alleine spielen kann. Der Stift sollte also die jeweiligen Hundenamen vorlesen. Ich war zuversichtlich, dass es bestimmt paar clevere Leute gibt, die herausgefunden haben, wie man den Stift auch für eigene Projekt einsetzen kann. Und siehe da: Es gibt das geniale Tool tttool. Hiermit konnte ich das Projekt in ca. einem Tag umsetzen. Desweiteren war noch ein bisschen Python-Coding notwendig.

Wie funktioniert der TipToi-Stift überhaupt?

Dies wird hier hervorragend beschrieben und daher erlaube ich mir die Faulheit, die Funktionsweise nicht näher zu erläutern. Es sei nur so viel gesagt: Der Stift arbeitet optisch und erkennt so genannte OID-Codes. Jeder Hundename muss nun also einem OID-Code zu geordnet werden und dann jedem OID-Code noch eine entsprechende Audio-Datei, die den Hundenamen enthält.

Welche Dateien sind für was?

Wenn ihr direkt damit loslegen wollt, das Quiz um die TipToi-Funktion zu erweitern, so braucht ihr lediglich 2 Dateien:

  • dogs.gme: Diese Datei enthält alle Sounddateien und die notwendigen Information für den TipToi, um das Hundequiz auf diesem zu spielen. Hier könnt ihr genauer nachlesen, wenn ihr das Konzept der gme-Datei genauer verstehen wollt. Diese Datei könnt ihr direkt auf den Stift schieben.
  • dogs_box.pdf: In dieser Datei sind die Steuerfelder und alle Hunde-Namen in OID-Code abgebildet, wobei in jedem Codefeld ein Knochen eingebettet ist. Diese Datei muss ausgedruckt werden und dann jeder Knochen auf das entsprechende Hundekarte geklebt werden. Folgendes Bild zeigt 3 Hundekarten mit aufgeklebtem "OID-Knochen":

Die Steuerzeichen (Stop habe ich nicht verwendet), sind auf der Box aufgeklebt:

Beim Drucken liegt leider der Teufel im Detail, [siehe auch hier](https://github.com/entropia/tip-toi-reveng/wiki/Printing). Ich habe es mit meinem Drucker (Brother HL-L2370DN) mit den folgenden Druckeinstellungen gut hinbekommen:
  • Auflösung: HQ1200
  • Druckeinstellungen: Manuell
    • Helligkeit: 0
    • Konstrast: +34
    • Grafikqualität: Text
    • Rest wie vorgegeben

Auf weiße Etiketten spricht mein TipToi hervorragend an. Allerdings hatte ich den Ehrgeiz die Knochen auf transparente Etiketten zu drucken. Das klappt zwar immer noch, aber nicht mehr ganz so gut. Achtung: Der Druck darf nicht skaliert werden!

Wenn ihr das Projekt modifizieren wollt, also vielleicht die Audiodateien verändern wollt, weil sie euch nicht gefallen, oder ihr eigene Hundekarten ergänzen wollt, braucht ihr folgende Dateien, wobei die Reihenfolge, in der ich sie hier nennen, einen gewissen Ablauf beschreibt.

  • dogs.xls: Diese Excel-Tabelle enthält drei Spalten:
    1. Der Hundename in exakter Schreibweise
    2. Ein Dateiname (ohne Leerzeichen), der den Hundenamen repräsentiert.
    3. Die Sprache (repräsentiert durch ein Kürzel), in der später die Audio-Datei für den Hundenamen generiert werden soll
  • gen_dogs.py: Dieses Skript lädt diese Excel-Datei ein und lässt eine Schleife über alle Hundenamen laufen. Hierbei wird mit Hilfe der Google Text-to-Speech-API eine Audiodatei für jeden Hundenamen erzeugt. Desweiteren wird eine entsprechende yaml-Datei erzeugt. Diese Datei benötigt das tttool dann später um zu wissen für welche Ereignisse/Begriffe (hier: die Hundename) welche Aktionen (hier: Abspielen des Hundenamens) generiert und OID codiert werden sollen.
  • hello_dog.ogg: Diese ist eine akustische Begrüßung, die ich eingespielt habe und die ertönt, wenn das Start-Symbol gewählt wird. Sie kann nach Belieben durch eine andere Datei ersetzt werden. Eure Kinder freuen sich bestimmt, wenn sie eure eigene Stimme zu hören bekommen.
  • gen_gme.bat: Dieses Batch-Skript erzeugt aus der yaml-Datei und den Soundfiles die entsprechende gme-Datei
  • gen_oid.bat: Dieses Batch-Skript erzeugt die OID-Codes in einer Tabelle im PDF-Format. Die Größe habe ich entsprechend so gewählt, dass der Knochen auf der Quizkarte nicht zu viel Platz einnimmt. Außerdem habe ich die Pixel-Größe auf 3 (statt wie standardmäßig 2) eingestellt. Dadurch hat mein Stift die Codes überhaupt erst erkannt.
  • overlay.docx: In diesem Word-Dokument sind Hundeknochen tabellarisch im gleichen Raster angeordnet, wie die OID-Codes in dem PDF, was durch das vorherige Skript erstellt worden ist. Daraus muss eine PDF-Datei erstellt werden (auch hier nicht skalieren!)
  • merge_pdf.py: Dieses Python-Skript verschmelzt die dogs.pdf mit der overlay.pdf zu dogs_box.pdf, die dann gemäß obiger Beschreibung ausgedruckt werden kann.

Viel Spaß beim Verwenden und Modifizieren! Über eine Rückmeldung, wenn ihr es erfolgreich umgesetzt habt, würde ich mich freuen!

You might also like...
Official implementation of NLOS-OT: Passive Non-Line-of-Sight Imaging Using Optimal Transport (IEEE TIP, accepted)
Official implementation of NLOS-OT: Passive Non-Line-of-Sight Imaging Using Optimal Transport (IEEE TIP, accepted)

NLOS-OT Official implementation of NLOS-OT: Passive Non-Line-of-Sight Imaging Using Optimal Transport (IEEE TIP, accepted) Description In this reposit

PyTorch implementation of Deep HDR Imaging via A Non-Local Network (TIP 2020).
PyTorch implementation of Deep HDR Imaging via A Non-Local Network (TIP 2020).

NHDRRNet-PyTorch This is the PyTorch implementation of Deep HDR Imaging via A Non-Local Network (TIP 2020). 0. Differences between Original Paper and

tinykernel - A minimal Python kernel so you can run Python in your Python

tinykernel - A minimal Python kernel so you can run Python in your Python

Python-experiments - A Repository which contains python scripts to automate things and make your life easier with python
Python-experiments - A Repository which contains python scripts to automate things and make your life easier with python

Python Experiments A Repository which contains python scripts to automate things

Crab is a flexible, fast recommender engine for Python that integrates classic information filtering recommendation algorithms in the world of scientific Python packages (numpy, scipy, matplotlib).

Crab - A Recommendation Engine library for Python Crab is a flexible, fast recommender engine for Python that integrates classic information filtering r

Python scripts to detect faces in Python with the BlazeFace Tensorflow Lite models
Python scripts to detect faces in Python with the BlazeFace Tensorflow Lite models

Python scripts to detect faces using Python with the BlazeFace Tensorflow Lite models. Tested on Windows 10, Tensorflow 2.4.0 (Python 3.8).

A fast python implementation of Ray Tracing in One Weekend using python and Taichi
A fast python implementation of Ray Tracing in One Weekend using python and Taichi

ray-tracing-one-weekend-taichi A fast python implementation of Ray Tracing in One Weekend using python and Taichi. Taichi is a simple "Domain specific

Technical Indicators implemented in Python only using Numpy-Pandas as Magic  - Very Very Fast! Very tiny!  Stock Market Financial Technical Analysis Python library .  Quant Trading automation or cryptocoin exchange
Technical Indicators implemented in Python only using Numpy-Pandas as Magic - Very Very Fast! Very tiny! Stock Market Financial Technical Analysis Python library . Quant Trading automation or cryptocoin exchange

MyTT Technical Indicators implemented in Python only using Numpy-Pandas as Magic - Very Very Fast! to Stock Market Financial Technical Analysis Python

Owner
null
It's A ML based Web Site build with python and Django to find the breed of the dog

ML-Based-Dog-Breed-Identifier This is a Django Based Web Site To Identify the Breed of which your DOG belogs All You Need To Do is to Follow These Ste

Sanskar Dwivedi 2 Oct 12, 2022
use tensorflow 2.0 to tell a dog and cat from a specified picture

dog_or_cat use tensorflow 2.0 to tell a dog and cat from a specified picture This is one of the classic experiments for the introduction of deep learn

你这个代码我看不懂 1 Oct 22, 2021
A tensorflow model that predicts if the image is of a cat or of a dog.

Quick intro Hello and thank you for your interest in my project! This is the backend part of a two-repo application. The other part can be found here

Tudor Matei 0 Mar 8, 2022
In this project we use both Resnet and Self-attention layer for cat, dog and flower classification.

cdf_att_classification classes = {0: 'cat', 1: 'dog', 2: 'flower'} In this project we use both Resnet and Self-attention layer for cdf-Classification.

null 3 Nov 23, 2022
Employs neural networks to classify images into four categories: ship, automobile, dog or frog

Neural Net Image Classifier Employs neural networks to classify images into four categories: ship, automobile, dog or frog Viterbi_1.py uses a classic

Riley Baker 1 Jan 18, 2022
(IEEE TIP 2021) Regularized Densely-connected Pyramid Network for Salient Instance Segmentation

RDPNet IEEE TIP 2021: Regularized Densely-connected Pyramid Network for Salient Instance Segmentation PyTorch training and testing code are available.

Yu-Huan Wu 41 Oct 21, 2022
[TIP 2020] Multi-Temporal Scene Classification and Scene Change Detection with Correlation based Fusion

Multi-Temporal Scene Classification and Scene Change Detection with Correlation based Fusion Code for Multi-Temporal Scene Classification and Scene Ch

Lixiang Ru 33 Dec 12, 2022
Code release for The Devil is in the Channels: Mutual-Channel Loss for Fine-Grained Image Classification (TIP 2020)

The Devil is in the Channels: Mutual-Channel Loss for Fine-Grained Image Classification Code release for The Devil is in the Channels: Mutual-Channel

PRIS-CV: Computer Vision Group 230 Dec 31, 2022
[TIP 2021] SADRNet: Self-Aligned Dual Face Regression Networks for Robust 3D Dense Face Alignment and Reconstruction

SADRNet Paper link: SADRNet: Self-Aligned Dual Face Regression Networks for Robust 3D Dense Face Alignment and Reconstruction Requirements python

Multimedia Computing Group, Nanjing University 99 Dec 30, 2022
Code for the TIP 2021 Paper "Salient Object Detection with Purificatory Mechanism and Structural Similarity Loss"

PurNet Project for the TIP 2021 Paper "Salient Object Detection with Purificatory Mechanism and Structural Similarity Loss" Abstract Image-based salie

Jinming Su 4 Aug 25, 2022