PyTorch implementation of Deep HDR Imaging via A Non-Local Network (TIP 2020).

Overview

NHDRRNet-PyTorch

Framework

0. Differences between Original Paper and this Repository

  • The mu-PSNR value in the paper is 42.4143 dB, in this PyTorch implementation version, the mu-PSNR value is 43.1572 dB.
  • In the training process, data augmentation is not implemented in the repository.
  • In the training process, the original paper trained the model for 160,000 epochs and adjust the learning rate for every 20,000 epochs after 80,000 epochs. While in the repository, the mu-PSNR value reached 43.1572 dB after around 6000 epochs and the learning rate is adjusted every 20,000 epochs.

1. Environment

  • Python >= 3.7
  • PyTorch >= 1.4.0
  • opencv-python = 4.5.1
  • imageio = 2.13.3
  • matplotlib

2. Dataset

The training data and testing data is from Kalantari (ACM TOG 2017), the dataset can be downloade from Kalantari Dataset.

3. Quick Demo (Only for tiff format 48-depth images (same with the Kalantari Dataset) now, others in progress)

  1. Clone this repository:
    git clone https://github.com/ytZhang99/NHDRRNet-PyTorch.git
    
  2. Download the trained model from Baidu Netdisk , Access Code: [pho5]. Place the model under ./ckp .
  3. Place the test image folders in ./data/Test/:
    Test
    └── test_data
        ├── Name_A
        |   ├── 1.tif
        |   ├── 2.tif
        |   ├── 3.tif
        |   ├── exposure.txt
        |   └── HDRImg.hdr (optional)
        └── Name_B
    
  4. Run the following command to test :
    python main.py --test_only
    
    The output images are placed in ./results/0_epoch/

4. Training

  1. Place the training image folders in ./data/Train/:
    Train
    └── train_data
        ├── Name_A
        |   ├── 1.tif
        |   ├── 2.tif
        |   ├── 3.tif
        |   ├── exposure.txt
        |   └── HDRImg.hdr
        └── Name_B
    
  2. Modify the main.sh file and run the following command to train :
    sh main.sh
    
    Notice that the default setting of this program is implementing validation on the test dataset after training, you can modify main.sh to close the validation progress.
  3. The trained model is saved in ./ckp/, then you can test your own model :
    python main.py --test_only --model latest.pth
    python main.py --test_only --model best_checkpoint.pth (This model is accessible with validation)
    
You might also like...
(IEEE TIP 2021) Regularized Densely-connected Pyramid Network for Salient Instance Segmentation

RDPNet IEEE TIP 2021: Regularized Densely-connected Pyramid Network for Salient Instance Segmentation PyTorch training and testing code are available.

Code for the paper
Code for the paper "MASTER: Multi-Aspect Non-local Network for Scene Text Recognition" (Pattern Recognition 2021)

MASTER-PyTorch PyTorch reimplementation of "MASTER: Multi-Aspect Non-local Network for Scene Text Recognition" (Pattern Recognition 2021). This projec

Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity
Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity

This repository is the official PyTorch implementation of Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity

The code release of paper 'Domain Generalization for Medical Imaging Classification with Linear-Dependency Regularization' NIPS 2020.
The code release of paper 'Domain Generalization for Medical Imaging Classification with Linear-Dependency Regularization' NIPS 2020.

Domain Generalization for Medical Imaging Classification with Linear Dependency Regularization The code release of paper 'Domain Generalization for Me

Decentralized Reinforcment Learning: Global Decision-Making via Local Economic Transactions (ICML 2020)
Decentralized Reinforcment Learning: Global Decision-Making via Local Economic Transactions (ICML 2020)

Decentralized Reinforcement Learning This is the code complementing the paper Decentralized Reinforcment Learning: Global Decision-Making via Local Ec

PyTorch code for our paper
PyTorch code for our paper "Image Super-Resolution with Non-Local Sparse Attention" (CVPR2021).

Image Super-Resolution with Non-Local Sparse Attention This repository is for NLSN introduced in the following paper "Image Super-Resolution with Non-

PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network"

HAN PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network" This repository is for HAN introduced in the

PyTorch implementation of the Deep SLDA method from our CVPRW-2020 paper
PyTorch implementation of the Deep SLDA method from our CVPRW-2020 paper "Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis"

Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis This is a PyTorch implementation of the Deep Streaming Linear Discriminant

A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection
A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection

Confluence: A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection 1. 介绍 用以替代 NMS,在所有 bbox 中挑选出最优的集合。 NMS 仅考虑了 bbox 的得分,然后根据 IOU 来

Owner
Yutong Zhang
Yutong Zhang
Pytorch implementation of various High Dynamic Range (HDR) Imaging algorithms

Deep High Dynamic Range Imaging Benchmark This repository is the pytorch impleme

Tianhong Dai 5 Nov 16, 2022
Keyhole Imaging: Non-Line-of-Sight Imaging and Tracking of Moving Objects Along a Single Optical Path

Keyhole Imaging Code & Dataset Code associated with the paper "Keyhole Imaging: Non-Line-of-Sight Imaging and Tracking of Moving Objects Along a Singl

Stanford Computational Imaging Lab 20 Feb 3, 2022
[TIP 2020] Multi-Temporal Scene Classification and Scene Change Detection with Correlation based Fusion

Multi-Temporal Scene Classification and Scene Change Detection with Correlation based Fusion Code for Multi-Temporal Scene Classification and Scene Ch

Lixiang Ru 33 Dec 12, 2022
Code release for The Devil is in the Channels: Mutual-Channel Loss for Fine-Grained Image Classification (TIP 2020)

The Devil is in the Channels: Mutual-Channel Loss for Fine-Grained Image Classification Code release for The Devil is in the Channels: Mutual-Channel

PRIS-CV: Computer Vision Group 230 Dec 31, 2022
HDR Video Reconstruction: A Coarse-to-fine Network and A Real-world Benchmark Dataset (ICCV 2021)

Code for HDR Video Reconstruction HDR Video Reconstruction: A Coarse-to-fine Network and A Real-world Benchmark Dataset (ICCV 2021) Guanying Chen, Cha

Guanying Chen 64 Nov 19, 2022
Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021.

NL-CSNet-Pytorch Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021. Note: this repo only shows the strategy of

WenxueCui 7 Nov 7, 2022
This project is a re-implementation of MASTER: Multi-Aspect Non-local Network for Scene Text Recognition by MMOCR

This project is a re-implementation of MASTER: Multi-Aspect Non-local Network for Scene Text Recognition by MMOCR,which is an open-source toolbox based on PyTorch. The overall architecture will be shown below.

Jianquan Ye 82 Nov 17, 2022
Dense Deep Unfolding Network with 3D-CNN Prior for Snapshot Compressive Imaging, ICCV2021 [PyTorch Code]

Dense Deep Unfolding Network with 3D-CNN Prior for Snapshot Compressive Imaging, ICCV2021 [PyTorch Code]

Jian Zhang 20 Oct 24, 2022
Non-Imaging Transient Reconstruction And TEmporal Search (NITRATES)

Non-Imaging Transient Reconstruction And TEmporal Search (NITRATES) This repo contains the full NITRATES pipeline for maximum likelihood-driven discov

null 13 Nov 8, 2022
[ICLR'21] FedBN: Federated Learning on Non-IID Features via Local Batch Normalization

FedBN: Federated Learning on Non-IID Features via Local Batch Normalization This is the PyTorch implemention of our paper FedBN: Federated Learning on

Med-AIR@CUHK 156 Dec 15, 2022