Python package for analyzing sensor-collected human motion data

Overview

Installation | Requirements | Usage | Contribution | Getting Help

Sensor Motion

PyPI - Python Version PyPI GitHub issues https://readthedocs.org/projects/sensormotion/badge/?version=latest https://badges.gitter.im/gitterHQ/gitter.png

Python package for analyzing sensor-collected human motion data (e.g. physical activity levels, gait dynamics).

Dedicated accelerometer devices, such as those made by Actigraph, usually bundle software for the analysis of the sensor data. In my work I often collect sensor data from smartphones and have not been able to find any comparable analysis software.

This Python package allows the user to extract human motion data, such as gait/walking dynamics, directly from accelerometer signals. Additionally, the package allows for the calculation of physical activity (PA) or moderate-to-vigorous physical activity (MVPA) counts, similar to activity count data offered by companies like Actigraph.

Installation

You can install this package using pip:

pip install sensormotion

Requirements

This package has the following dependencies, most of which are just Python packages:

  • Python 3.x
    • The easiest way to install Python is using the Anaconda distribution, as it also includes the other dependencies listed below
    • Python 2.x has not been tested, so backwards compatibility is not guaranteed
  • numpy
    • Included with Anaconda. Otherwise, install using pip (pip install numpy)
  • scipy
    • Included with Anaconda. Otherwise, install using pip (pip install scipy)
  • matplotlib
    • Included with Anaconda. Otherwise, install using pip (pip install matplotlib)

Usage

Here is brief example of extracting step-based metrics from raw vertical acceleration data:

Import the package:

import sensormotion as sm

If you have a vertical acceleration signal x, and its corresponding time signal t, we can begin by filtering the signal using a low-pass filter:

b, a = sm.signal.build_filter(frequency=10,
                              sample_rate=100,
                              filter_type='low',
                              filter_order=4)

x_filtered = sm.signal.filter_signal(b, a, signal=x)

images/filter.png

Next, we can detect the peaks (or valleys) in the filtered signal, which gives us the time and value of each detection. Optionally, we can include a plot of the signal and detected peaks/valleys:

peak_times, peak_values = sm.peak.find_peaks(time=t, signal=x_filtered,
                                             peak_type='valley',
                                             min_val=0.6, min_dist=30,
                                             plot=True)

images/peak_detection.png

From the detected peaks, we can then calculate step metrics like cadence and step time:

cadence = sm.gait.cadence(time=t, peak_times=peak_times, time_units='ms')
step_mean, step_sd, step_cov = sm.gait.step_time(peak_times=peak_times)

Physical activity counts and intensities can also be calculated from the acceleration data:

x_counts = sm.pa.convert_counts(x, time, integrate='simpson')
y_counts = sm.pa.convert_counts(y, time, integrate='simpson')
z_counts = sm.pa.convert_counts(z, time, integrate='simpson')
vm = sm.signal.vector_magnitude(x_counts, y_counts, z_counts)
categories, time_spent = sm.pa.cut_points(vm, set_name='butte_preschoolers', n_axis=3)

images/pa_counts.png

For a more in-depth tutorial, and more workflow examples, please take a look at the tutorial.

I would also recommend looking over the documentation to see other functionalities of the package.

Contribution

I work on this package in my spare time, on an "as needed" basis for my research projects. However, pull requests for bug fixes and new features are always welcome!

Please see the develop branch for the development version of the package, and check out the issues page for bug reports and feature requests.

Getting Help

You can find the full documentation for the package here

Python's built-in help function will show documentation for any module or function: help(sm.gait.step_time)

You're encouraged to post questions, bug reports, or feature requests as an issue

Alternatively, ask questions on Gitter

Comments
  • Question

    Question

    I am using sensormotion.py package for finding peaks for one of my applications. I want to know how normalized min_value (0-1) in peak.find_peaks is related to minimum detectable peak value.

    opened by vivekmahadev 2
  • I need help using this library!

    I need help using this library!

    Hi

    I'm very interested in using this library in my project. I have a test of 2min walking at 100Hz and I collect the data from accelerometer, gyro and magnetometer of an Iphone 6.

    I'm trying to use the library with my data but I could understand some things. For example this function sm.peak.find_peaks(ac_lags, ac, peak_type='peak', min_val= 0.6, min_dist=32, plot=True). What are the suitable values of min_val and min_dist parameters? Are they problem dependent? I have tried with many values and the step estimation is not correct.

    Please, could you help me?

    Best regards

    opened by ogreyesp 1
  • sm.gait.step_regularity IndexError

    sm.gait.step_regularity IndexError

    step_reg, stride_reg = sm.gait.step_regularity(ac_peak_values) File ".../python3.6/site-packages/sensormotion-1.1.0-py3.6.egg/sensormotion/gait.py", line 128, in step_regularity ac_d2 = peaks_half[2] # second dominant period i.e. a stride (left-left) sm.gait.step_regularity IndexError: index 2 is out of bounds for axis 0 with size 2

    opened by jiakang 1
  • Example: Importing from live cvs file?

    Example: Importing from live cvs file?

    opened by RandoSY 1
  • Question about step regularity

    Question about step regularity

    Hey, I'm using your package right now to generate features for a dataset. I have looked at the paper by Moe Nilssen et al. and tried to follow the steps for calculating step and stride regularity. However, I wonder why you still do the following calculation at the end:

    step_reg = ac_d1 / ac_lag0 stride_reg = ac_d2 / ac_lag0

    Can you help me with this?

    opened by vanessabin 1
Releases(1.1.4)
Owner
Simon Ho
Data Science | Machine Learning | Statistics | Gaming
Simon Ho
Python package for analyzing behavioral data for Brain Observatory: Visual Behavior

Allen Institute Visual Behavior Analysis package This repository contains code for analyzing behavioral data from the Allen Brain Observatory: Visual

Allen Institute 16 Nov 4, 2022
small package with utility functions for analyzing (fly) calcium imaging data

fly2p Tools for analyzing two-photon (2p) imaging data collected with Vidrio Scanimage software and micromanger. Loading scanimage data relies on scan

Hannah Haberkern 3 Dec 14, 2022
ToeholdTools is a Python package and desktop app designed to facilitate analyzing and designing toehold switches, created as part of the 2021 iGEM competition.

ToeholdTools Category Status Repository Package Build Quality A library for the analysis of toehold switch riboregulators created by the iGEM team Cit

null 0 Dec 1, 2021
yt is an open-source, permissively-licensed Python library for analyzing and visualizing volumetric data.

The yt Project yt is an open-source, permissively-licensed Python library for analyzing and visualizing volumetric data. yt supports structured, varia

The yt project 367 Dec 25, 2022
Python dataset creator to construct datasets composed of OpenFace extracted features and Shimmer3 GSR+ Sensor datas

Python dataset creator to construct datasets composed of OpenFace extracted features and Shimmer3 GSR+ Sensor datas

Gabriele 3 Jul 5, 2022
A collection of robust and fast processing tools for parsing and analyzing web archive data.

ChatNoir Resiliparse A collection of robust and fast processing tools for parsing and analyzing web archive data. Resiliparse is part of the ChatNoir

ChatNoir 24 Nov 29, 2022
The official repository for ROOT: analyzing, storing and visualizing big data, scientifically

About The ROOT system provides a set of OO frameworks with all the functionality needed to handle and analyze large amounts of data in a very efficien

ROOT 2k Dec 29, 2022
Analyzing Earth Observation (EO) data is complex and solutions often require custom tailored algorithms.

eo-grow Earth observation framework for scaled-up processing in Python. Analyzing Earth Observation (EO) data is complex and solutions often require c

Sentinel Hub 18 Dec 23, 2022
PCAfold is an open-source Python library for generating, analyzing and improving low-dimensional manifolds obtained via Principal Component Analysis (PCA).

PCAfold is an open-source Python library for generating, analyzing and improving low-dimensional manifolds obtained via Principal Component Analysis (PCA).

Burn Research 4 Oct 13, 2022
Unsub is a collection analysis tool that assists libraries in analyzing their journal subscriptions.

About Unsub is a collection analysis tool that assists libraries in analyzing their journal subscriptions. The tool provides rich data and a summary g

null 9 Nov 16, 2022
Developed for analyzing the covariance for OrcVIO

about This repo is developed for analyzing the covariance for OrcVIO environment setup platform ubuntu 18.04 using conda conda env create --file envir

Sean 1 Dec 8, 2021
MoRecon - A tool for reconstructing missing frames in motion capture data.

MoRecon - A tool for reconstructing missing frames in motion capture data.

Yuki Nishidate 38 Dec 3, 2022
GWpy is a collaboration-driven Python package providing tools for studying data from ground-based gravitational-wave detectors

GWpy is a collaboration-driven Python package providing tools for studying data from ground-based gravitational-wave detectors. GWpy provides a user-f

GWpy 342 Jan 7, 2023
Python package for processing UC module spectral data.

UC Module Python Package How To Install clone repo. cd UC-module pip install . How to Use uc.module.UC(measurment=str, dark=str, reference=str, heade

Nicolai Haaber Junge 1 Oct 20, 2021
PyEmits, a python package for easy manipulation in time-series data.

PyEmits, a python package for easy manipulation in time-series data. Time-series data is very common in real life. Engineering FSI industry (Financial

Thompson 5 Sep 23, 2022
VevestaX is an open source Python package for ML Engineers and Data Scientists.

VevestaX Track failed and successful experiments as well as features. VevestaX is an open source Python package for ML Engineers and Data Scientists.

Vevesta 24 Dec 14, 2022
nrgpy is the Python package for processing NRG Data Files

nrgpy nrgpy is the Python package for processing NRG Data Files Website and source: https://github.com/nrgpy/nrgpy Documentation: https://nrgpy.github

NRG Tech Services 23 Dec 8, 2022
Python package to transfer data in a fast, reliable, and packetized form.

pySerialTransfer Python package to transfer data in a fast, reliable, and packetized form.

PB2 101 Dec 7, 2022
Amundsen is a metadata driven application for improving the productivity of data analysts, data scientists and engineers when interacting with data.

Amundsen is a metadata driven application for improving the productivity of data analysts, data scientists and engineers when interacting with data.

Amundsen 3.7k Jan 3, 2023