Repository for Multimodal AutoML Benchmark

Overview

Benchmarking Multimodal AutoML for Tabular Data with Text Fields

Repository for the NeurIPS 2021 Dataset Track Submission "Benchmarking Multimodal AutoML for Tabular Data with Text Fields" (Link, Full Paper with Appendix). An earlier version of the paper, called "Multimodal AutoML on Structured Tables with Text Fields" (Link) has been accepted by ICML 2021 AutoML workshop as Oral. As we have since updated the benchmark with more datasets, the version used in the AutoML workshop paper has been archived at the icml_workshop branch.

This benchmark contains a diverse collection of tabular datasets. Each dataset contains numeric/categorical as well as text columns. The goal is to evaluate the performance of (automated) ML systems for supervised learning (classification and regression) with such multimodal data. The folder multimodal_text_benchmark/scripts/benchmark/ provides Python scripts to run different variants of the AutoGluon and H2O AutoML tools on the benchmark.

Datasets used in the Benchmark

Here's a brief summary of the datasets in our benchmark. Each dataset is described in greater detail in the multimodal_text_benchmark/ folder.

ID key #Train #Test Task Metric Prediction Target
prod product_sentiment_machine_hack 5,091 1,273 multiclass accuracy sentiment related to product
salary data_scientist_salary 15,84 3961 multiclass accuracy salary range in data scientist job listings
airbnb melbourne_airbnb 18,316 4,579 multiclass accuracy price of Airbnb listing
channel news_channel 20,284 5,071 multiclass accuracy category of news article
wine wine_reviews 84,123 21,031 multiclass accuracy variety of wine
imdb imdb_genre_prediction 800 200 binary roc_auc whether film is a drama
fake fake_job_postings2 12,725 3,182 binary roc_auc whether job postings are fake
kick kick_starter_funding 86,052 21,626 binary roc_auc will Kickstarter get funding
jigsaw jigsaw_unintended_bias100K 100,000 25,000 binary roc_auc whether comments are toxic
qaa google_qa_answer_type_reason_explanation 4,863 1,216 regression r2 type of answer
qaq google_qa_question_type_reason_explanation 4,863 1,216 regression r2 type of question
book bookprice_prediction 4,989 1,248 regression r2 price of books
jc jc_penney_products 10,860 2,715 regression r2 price of JC Penney products
cloth women_clothing_review 18,788 4,698 regression r2 review score
ae ae_price_prediction 22,662 5,666 regression r2 American-Eagle item prices
pop news_popularity2 24,007 6,002 regression r2 news article popularity online
house california_house_price 24,007 6,002 regression r2 sale price of houses in California
mercari mercari_price_suggestion100K 100,000 25,000 regression r2 price of Mercari products

License

The versions of datasets in this benchmark are released under the CC BY-NC-SA license. Note that the datasets in this benchmark are modified versions of previously publicly-available original copies and we do not own any of the datasets in the benchmark. Any data from this benchmark which has previously been published elsewhere falls under the original license from which the data originated. Please refer to the licenses of each original source linked in the multimodal_text_benchmark/README.md.

Install the Benchmark Suite

cd multimodal_text_benchmark
# Install the benchmarking suite
python3 -m pip install -U -e .

You can do a quick test of the installation by going to the test folder

cd multimodal_text_benchmark/tests
python3 -m pytest test_datasets.py

To work with one of the datasets, use the following code:

from auto_mm_bench.datasets import dataset_registry

print(dataset_registry.list_keys())  # list of all dataset names
dataset_name = 'product_sentiment_machine_hack'

train_dataset = dataset_registry.create(dataset_name, 'train')
test_dataset = dataset_registry.create(dataset_name, 'test')
print(train_dataset.data)
print(test_dataset.data)

To access all datasets that comprise the benchmark:

from auto_mm_bench.datasets import create_dataset, TEXT_BENCHMARK_ALIAS_MAPPING

for dataset_name in list(TEXT_BENCHMARK_ALIAS_MAPPING.values()):
    print(dataset_name)
    dataset = create_dataset(dataset_name)

Run Experiments

Go to multimodal_text_benchmark/scripts/benchmark to see how to run some baseline ML methods over the benchmark.

References

BibTeX entry of the ICML Workshop Version:

@article{agmultimodaltext,
  title={Multimodal AutoML on Structured Tables with Text Fields},
  author={Shi, Xingjian and Mueller, Jonas and Erickson, Nick and Li, Mu and Smola, Alexander},
  journal={8th ICML Workshop on Automated Machine Learning (AutoML)},
  year={2021}
}
You might also like...
A repository for the updated version of CoinRun used to collect MUGEN, a multimodal video-audio-text dataset.

A repository for the updated version of CoinRun used to collect MUGEN, a multimodal video-audio-text dataset. This repo contains scripts to train RL agents to navigate the closed world and collect video data.

Repository for Traffic Accident Benchmark for Causality Recognition (ECCV 2020)
Repository for Traffic Accident Benchmark for Causality Recognition (ECCV 2020)

Causality In Traffic Accident (Under Construction) Repository for Traffic Accident Benchmark for Causality Recognition (ECCV 2020) Overview Data Prepa

A code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Vanderhaeghe, and Yotam Gingold from SIGGRAPH Asia 2020.

A Benchmark for Rough Sketch Cleanup This is the code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Va

Repository for the Bias Benchmark for QA dataset.

BBQ Repository for the Bias Benchmark for QA dataset. Authors: Alicia Parrish, Angelica Chen, Nikita Nangia, Vishakh Padmakumar, Jason Phang, Jana Tho

Repository for the electrical and ICT benchmark model developed in the ERIGrid 2.0 project.

Benchmark Model Electrical and ICT System This repository contains the documentation, code, and models for the electrical and ICT benchmark model deve

A Comparative Framework for Multimodal Recommender Systems
A Comparative Framework for Multimodal Recommender Systems

Cornac Cornac is a comparative framework for multimodal recommender systems. It focuses on making it convenient to work with models leveraging auxilia

This repo provides the official code for TransBTS: Multimodal Brain Tumor Segmentation Using Transformer (https://arxiv.org/pdf/2103.04430.pdf).
This repo provides the official code for TransBTS: Multimodal Brain Tumor Segmentation Using Transformer (https://arxiv.org/pdf/2103.04430.pdf).

TransBTS: Multimodal Brain Tumor Segmentation Using Transformer This repo is the official implementation for TransBTS: Multimodal Brain Tumor Segmenta

Deep Multimodal Neural Architecture Search
Deep Multimodal Neural Architecture Search

MMNas: Deep Multimodal Neural Architecture Search This repository corresponds to the PyTorch implementation of the MMnas for visual question answering

 Rethinking the U-Net architecture for multimodal biomedical image segmentation
Rethinking the U-Net architecture for multimodal biomedical image segmentation

MultiResUNet Rethinking the U-Net architecture for multimodal biomedical image segmentation This repository contains the original implementation of "M

Owner
Xingjian Shi
Xingjian Shi
This repository contains the official implementation code of the paper Improving Multimodal Fusion with Hierarchical Mutual Information Maximization for Multimodal Sentiment Analysis, accepted at EMNLP 2021.

MultiModal-InfoMax This repository contains the official implementation code of the paper Improving Multimodal Fusion with Hierarchical Mutual Informa

Deep Cognition and Language Research (DeCLaRe) Lab 89 Dec 26, 2022
Model search is a framework that implements AutoML algorithms for model architecture search at scale

Model search (MS) is a framework that implements AutoML algorithms for model architecture search at scale. It aims to help researchers speed up their exploration process for finding the right model architecture for their classification problems (i.e., DNNs with different types of layers).

Google 3.2k Dec 31, 2022
Clairvoyance: a Unified, End-to-End AutoML Pipeline for Medical Time Series

Clairvoyance: A Pipeline Toolkit for Medical Time Series Authors: van der Schaar Lab This repository contains implementations of Clairvoyance: A Pipel

van_der_Schaar \LAB 89 Dec 7, 2022
An AutoML Library made with Optuna and PyTorch Lightning

An AutoML Library made with Optuna and PyTorch Lightning Installation Recommended pip install -U gradsflow From source pip install git+https://github.

GradsFlow 294 Dec 17, 2022
Neural networks applied in recognizing guitar chords using python, AutoML.NET with C# and .NET Core

Chord Recognition Demo application The demo application is written in C# with .NETCore. As of July 9, 2020, the only version available is for windows

Andres Mauricio Rondon Patiño 24 Oct 22, 2022
AutoDeeplab / auto-deeplab / AutoML for semantic segmentation, implemented in Pytorch

AutoML for Image Semantic Segmentation Currently this repo contains the only working open-source implementation of Auto-Deeplab which, by the way out-

AI Necromancer 299 Dec 17, 2022
MMRazor: a model compression toolkit for model slimming and AutoML

Documentation: https://mmrazor.readthedocs.io/ English | 简体中文 Introduction MMRazor is a model compression toolkit for model slimming and AutoML, which

OpenMMLab 899 Jan 2, 2023
The code repository for EMNLP 2021 paper "Vision Guided Generative Pre-trained Language Models for Multimodal Abstractive Summarization".

Vision Guided Generative Pre-trained Language Models for Multimodal Abstractive Summarization [Paper] accepted at the EMNLP 2021: Vision Guided Genera

CAiRE 42 Jan 7, 2023