I just downloaded Causal Impact from github and was attempting a test run with the data and code below on python 3.6.3.
I'm getting an "unhashable type: 'slice'" error when attempting the ci.plot() command, though ci.plot_components() works without issue.
Error seems to be coming from line 118 in causal_impact.py in plot(self)
Not sure if anyone else has run into this and/or has a work around, but figured I'd post since I haven't seem much documentation on this online.
========Code============
Source: https://github.com/tcassou/causal_impact/issues/5).
from causal_impact.causal_impact import CausalImpact
import pandas as pd
import sys
from io import StringIO
DATA = """
t,y,x1,x2\n
2016-02-20 22:41:20,110.0,134.0,128.0\n
2016-02-20 22:41:30,125.0,134.0,128.0\n
2016-02-20 22:41:40,123.0,134.0,128.0\n
2016-02-20 22:41:50,128.0,134.0,128.0\n
2016-02-20 22:42:00,114.0,134.0,128.0\n
2016-02-20 22:42:10,125.0,133.0,128.0\n
2016-02-20 22:42:20,119.0,133.0,128.0\n
2016-02-20 22:42:30,121.0,133.0,128.0\n
2016-02-20 22:42:40,139.0,133.0,128.0\n
2016-02-20 22:42:50,107.0,133.0,128.0\n
2016-02-20 22:43:00,115.0,132.0,128.0\n
2016-02-20 22:43:10,91.0,132.0,128.0\n
2016-02-20 22:43:20,107.0,132.0,128.0\n
2016-02-20 22:43:30,124.0,132.0,128.0\n
2016-02-20 22:43:40,116.0,131.0,128.0\n
2016-02-20 22:43:50,110.0,131.0,128.0\n
2016-02-20 22:44:00,100.0,131.0,128.0\n
2016-02-20 22:44:10,110.0,131.0,128.0\n
2016-02-20 22:44:20,113.0,129.0,128.0\n
2016-02-20 22:44:30,103.0,129.0,128.0\n
2016-02-20 22:44:40,117.0,129.0,128.0\n
2016-02-20 22:44:50,125.0,129.0,128.0\n
2016-02-20 22:45:00,115.0,129.0,128.0\n
2016-02-20 22:45:10,114.0,128.0,128.0\n
2016-02-20 22:45:20,138.0,128.0,128.0\n
2016-02-20 22:45:30,117.0,128.0,128.0\n
2016-02-20 22:45:40,104.0,128.0,128.0\n
2016-02-20 22:45:50,123.0,128.0,128.0\n
2016-02-20 22:46:00,122.0,128.0,128.0\n
2016-02-20 22:46:10,150.0,128.0,128.0\n
2016-02-20 22:46:20,127.0,128.0,128.0\n
2016-02-20 22:46:30,139.0,128.0,128.0\n
2016-02-20 22:46:40,139.0,127.0,127.0\n
2016-02-20 22:46:50,109.0,127.0,127.0\n
2016-02-20 22:47:00,107.0,127.0,127.0\n
2016-02-20 22:47:10,94.0,127.0,127.0\n
2016-02-20 22:47:20,112.0,127.0,127.0\n
2016-02-20 22:47:30,107.0,127.0,127.0\n
2016-02-20 22:47:40,126.0,127.0,127.0\n
2016-02-20 22:47:50,114.0,127.0,127.0\n
2016-02-20 22:48:00,129.0,127.0,127.0\n
2016-02-20 22:48:10,113.0,126.0,127.0\n
2016-02-20 22:48:20,114.0,126.0,127.0\n
2016-02-20 22:48:30,116.0,126.0,127.0\n
2016-02-20 22:48:40,110.0,125.0,126.0\n
2016-02-20 22:48:50,131.0,125.0,126.0\n
2016-02-20 22:49:00,109.0,125.0,126.0\n
2016-02-20 22:49:10,114.0,125.0,127.0\n
2016-02-20 22:49:20,116.0,125.0,126.0\n
2016-02-20 22:49:30,113.0,124.0,125.0\n
2016-02-20 22:49:40,108.0,124.0,125.0\n
2016-02-20 22:49:50,120.0,124.0,125.0\n
2016-02-20 22:50:00,106.0,123.0,125.0\n
2016-02-20 22:50:10,123.0,123.0,125.0\n
2016-02-20 22:50:20,123.0,123.0,124.0\n
2016-02-20 22:50:30,135.0,123.0,124.0\n
2016-02-20 22:50:40,127.0,123.0,124.0\n
2016-02-20 22:50:50,140.0,123.0,123.0\n
2016-02-20 22:51:00,139.0,123.0,123.0\n
2016-02-20 22:51:10,137.0,123.0,123.0\n
2016-02-20 22:51:20,123.0,123.0,123.0\n
2016-02-20 22:51:30,160.0,122.0,123.0\n
2016-02-20 22:51:40,173.0,122.0,123.0\n
2016-02-20 22:51:50,236.0,122.0,123.0\n
2016-02-20 22:52:00,233.0,122.0,123.0\n
2016-02-20 22:52:10,193.0,122.0,123.0\n
2016-02-20 22:52:20,169.0,122.0,123.0\n
2016-02-20 22:52:30,167.0,122.0,123.0\n
2016-02-20 22:52:40,172.0,121.0,123.0\n
2016-02-20 22:52:50,148.0,121.0,123.0\n
2016-02-20 22:53:00,125.0,121.0,123.0\n
2016-02-20 22:53:10,132.0,121.0,123.0\n
2016-02-20 22:53:20,165.0,121.0,123.0\n
2016-02-20 22:53:30,154.0,120.0,123.0\n
2016-02-20 22:53:40,158.0,120.0,123.0\n
2016-02-20 22:53:50,135.0,120.0,123.0\n
2016-02-20 22:54:00,145.0,120.0,123.0\n
2016-02-20 22:54:10,163.0,119.0,122.0\n
2016-02-20 22:54:20,146.0,119.0,122.0\n
2016-02-20 22:54:30,120.0,119.0,121.0\n
2016-02-20 22:54:40,149.0,118.0,121.0\n
2016-02-20 22:54:50,140.0,118.0,121.0\n
2016-02-20 22:55:00,150.0,117.0,121.0\n
2016-02-20 22:55:10,133.0,117.0,120.0\n
2016-02-20 22:55:20,143.0,117.0,120.0\n
2016-02-20 22:55:30,145.0,117.0,120.0\n
2016-02-20 22:55:40,145.0,117.0,120.0\n
2016-02-20 22:55:50,176.0,117.0,120.0\n
2016-02-20 22:56:00,134.0,117.0,120.0\n
2016-02-20 22:56:10,147.0,117.0,120.0\n
2016-02-20 22:56:20,131.0,117.0,120.0"""
df = pd.read_csv(StringIO(DATA))
df["t"] = pd.to_datetime(df["t"])
df.index = df["t"]
del df["t"]
ci = CausalImpact(df, pd.to_datetime('2016-02-20 22:51:20'))
ci.run()
ci.plot()