A simple Python library for stochastic graphical ecological models

Overview

What is Viridicle?

Viridicle is a library for simulating stochastic graphical ecological models. It implements the continuous time models described in Section 6 of Durrett and Levin 1994. The library is written in C for speed, but has a Python API for ease of use. It supports well-mixed systems, multi-dimensional periodic lattices, and arbitrary graphs, with up to 256 species, and is substantially faster than comparable software written in Python alone.

Viridicle models an ecological system as a graph, where each vertex denotes a discrete site - an island, an oasis, a point on a Petri dish, etc. Each site is small enough that we can model its state by assigning it a single number specifying which species is occupying it. Traditionally, 0 denotes an unoccupied site, but neither the mathematics nor the code require this.

The system changes over time as a continuous-time Markov chain, where each directed edge in the system is a Poisson point process. That is, at any given moment, for every edge in the system, the time until the edge's vertices change to state is exponentially distributed with some rate that depends on the state of the system. The model is implemented using the Gillespie algorithm. For further details, consult the documentation.

Installation

To install Viridicle from the PyPi repo, run:

pip install viridicle

If you want to compile from source yourself, first make sure that you have gcc installed, along with Python, including its development headers. Then, run:

git clone https://github.com/TheoremEngine/viridicle.git
cd viridicle
python3 setup.py install
You might also like...
On the model-based stochastic value gradient for continuous reinforcement learning

On the model-based stochastic value gradient for continuous reinforcement learning This repository is by Brandon Amos, Samuel Stanton, Denis Yarats, a

iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis
iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis

iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis Andreas Bl

Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in Convolutional Networks
Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in Convolutional Networks

Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in Convolutional Networks (SDPoint) This repository contains the cod

Binary Stochastic Neurons in PyTorch

Binary Stochastic Neurons in PyTorch http://r2rt.com/binary-stochastic-neurons-in-tensorflow.html https://github.com/pytorch/examples/tree/master/mnis

PyTorch implementation for SDEdit: Image Synthesis and Editing with Stochastic Differential Equations
PyTorch implementation for SDEdit: Image Synthesis and Editing with Stochastic Differential Equations

SDEdit: Image Synthesis and Editing with Stochastic Differential Equations Project | Paper | Colab PyTorch implementation of SDEdit: Image Synthesis a

PyTorch implementation for Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuous Sign Language Recognition.

Stochastic CSLR This is the PyTorch implementation for the ECCV 2020 paper: Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuou

Task-based end-to-end model learning in stochastic optimization

Task-based End-to-end Model Learning in Stochastic Optimization This repository is by Priya L. Donti, Brandon Amos, and J. Zico Kolter and contains th

Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting
Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

StochFuzz: A New Solution for Binary-only Fuzzing StochFuzz is a (probabilistically) sound and cost-effective fuzzing technique for stripped binaries.

This package implements THOR: Transformer with Stochastic Experts.

THOR: Transformer with Stochastic Experts This PyTorch package implements Taming Sparsely Activated Transformer with Stochastic Experts. Installation

Comments
  • Malloc-related Issue in Benchmark.py

    Malloc-related Issue in Benchmark.py

    After having to reset my MacPorts install today for unrelated reasons, I decided to rerun Viridicle's tests and examples to check that it would work properly on my current install. Running benchmarks.py, however, led to an immediate series of crashes related to malloc (more specifically, to "incorrect checksum for freed object"), which only terminated when I manually killed the process with ^C. I have attached the console output below and a list of installed ports in case the latter is relevant.

    consoleOutput.txt portList.txt

    opened by ian-a-mitchell 8
Owner
Theorem Engine
Theorem Engine
Scikit-learn compatible estimation of general graphical models

skggm : Gaussian graphical models using the scikit-learn API In the last decade, learning networks that encode conditional independence relationships

null 213 Jan 2, 2023
Storchastic is a PyTorch library for stochastic gradient estimation in Deep Learning

Storchastic is a PyTorch library for stochastic gradient estimation in Deep Learning

Emile van Krieken 140 Dec 30, 2022
Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks

Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks. Bayesian-Torch is designed to be flexible and seamless in extending a deterministic deep neural network architecture to corresponding Bayesian form by simply replacing the deterministic layers with Bayesian layers.

Intel Labs 210 Jan 4, 2023
Python framework for Stochastic Differential Equations modeling

SDElearn: a Python package for SDE modeling This package implements functionalities for working with Stochastic Differential Equations models (SDEs fo

null 4 May 10, 2022
Official code for Score-Based Generative Modeling through Stochastic Differential Equations

Score-Based Generative Modeling through Stochastic Differential Equations This repo contains the official implementation for the paper Score-Based Gen

Yang Song 818 Jan 6, 2023
Code for "Infinitely Deep Bayesian Neural Networks with Stochastic Differential Equations"

Infinitely Deep Bayesian Neural Networks with SDEs This library contains JAX and Pytorch implementations of neural ODEs and Bayesian layers for stocha

Winnie Xu 95 Nov 26, 2021
Stochastic Normalizing Flows

Stochastic Normalizing Flows We introduce stochasticity in Boltzmann-generating flows. Normalizing flows are exact-probability generative models that

AI4Science group, FU Berlin (Frank NoƩ and co-workers) 50 Dec 16, 2022
Implementation of Stochastic Image-to-Video Synthesis using cINNs.

Stochastic Image-to-Video Synthesis using cINNs Official PyTorch implementation of Stochastic Image-to-Video Synthesis using cINNs accepted to CVPR202

CompVis Heidelberg 135 Dec 28, 2022
DeepLM: Large-scale Nonlinear Least Squares on Deep Learning Frameworks using Stochastic Domain Decomposition (CVPR 2021)

DeepLM DeepLM: Large-scale Nonlinear Least Squares on Deep Learning Frameworks using Stochastic Domain Decomposition (CVPR 2021) Run Please install th

Jingwei Huang 130 Dec 2, 2022
The official implementation of You Only Compress Once: Towards Effective and Elastic BERT Compression via Exploit-Explore Stochastic Nature Gradient.

You Only Compress Once: Towards Effective and Elastic BERT Compression via Exploit-Explore Stochastic Nature Gradient (paper) @misc{zhang2021compress,

null 46 Dec 7, 2022